{"title":"考虑城市环境地形影响的无线应用路径损耗公式","authors":"L. Piazzi, Henry L. Bertonj","doi":"10.1109/VETEC.1998.686499","DOIUrl":null,"url":null,"abstract":"This study examines propagation over buildings when the buildings are located on terrain features (hills). The buildings, which are represented by a series of absorbing half-screens, are assumed to lie in rows that are equally spaced along parallel streets, with the streets running perpendicular to the terrain slope. Numerical results are obtained using successive repetition of the Kirchhoff-Huygens approximation. A phenomenological model based on ray optics for diffraction over a smooth surface is proposed as a way to interpret the numerical results. The dependence of the model coefficients on the terrain parameters are obtained from the numerical results.","PeriodicalId":335954,"journal":{"name":"VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A path loss formulation for wireless applications considering terrain effects for urban environments\",\"authors\":\"L. Piazzi, Henry L. Bertonj\",\"doi\":\"10.1109/VETEC.1998.686499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines propagation over buildings when the buildings are located on terrain features (hills). The buildings, which are represented by a series of absorbing half-screens, are assumed to lie in rows that are equally spaced along parallel streets, with the streets running perpendicular to the terrain slope. Numerical results are obtained using successive repetition of the Kirchhoff-Huygens approximation. A phenomenological model based on ray optics for diffraction over a smooth surface is proposed as a way to interpret the numerical results. The dependence of the model coefficients on the terrain parameters are obtained from the numerical results.\",\"PeriodicalId\":335954,\"journal\":{\"name\":\"VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VETEC.1998.686499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VETEC.1998.686499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A path loss formulation for wireless applications considering terrain effects for urban environments
This study examines propagation over buildings when the buildings are located on terrain features (hills). The buildings, which are represented by a series of absorbing half-screens, are assumed to lie in rows that are equally spaced along parallel streets, with the streets running perpendicular to the terrain slope. Numerical results are obtained using successive repetition of the Kirchhoff-Huygens approximation. A phenomenological model based on ray optics for diffraction over a smooth surface is proposed as a way to interpret the numerical results. The dependence of the model coefficients on the terrain parameters are obtained from the numerical results.