整合多季节Landsat 8和TerraSAR-X数据用于城市制图:评估

P. Villa, G. Fontanelli, A. Crema
{"title":"整合多季节Landsat 8和TerraSAR-X数据用于城市制图:评估","authors":"P. Villa, G. Fontanelli, A. Crema","doi":"10.1109/JURSE.2015.7120474","DOIUrl":null,"url":null,"abstract":"Accurate land cover maps provide critical information to scientists and decision-makers involved in urban monitoring and management. Satellite remote sensing can be used for producing mid-resolution urban maps at regional scale, especially when integrating multispectral optical information with SAR data. Starting from processing of Landsat 8 and TerraSAR-X multi-seasonal data (March-August 2014) covering a study area located in Lombardy region (Italy), we carried out an assessment of urban mapping performance using different non-parametric supervised classification algorithms and input features. The results show that best overall accuracy is generally reached with Random Forest (95.5%) and Support Vector Machines (93.6%), using both optical and SAR information. Adding X-band backscatter as input information produced an average accuracy improvement around 3%. Among various land cover classes, detection errors were concentrated on urban sparse fabric, and vegetated land cover, especially when SAR features are not used as input.","PeriodicalId":207233,"journal":{"name":"2015 Joint Urban Remote Sensing Event (JURSE)","volume":"233 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Integration of multi-seasonal Landsat 8 and TerraSAR-X data for urban mapping: An assessment\",\"authors\":\"P. Villa, G. Fontanelli, A. Crema\",\"doi\":\"10.1109/JURSE.2015.7120474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate land cover maps provide critical information to scientists and decision-makers involved in urban monitoring and management. Satellite remote sensing can be used for producing mid-resolution urban maps at regional scale, especially when integrating multispectral optical information with SAR data. Starting from processing of Landsat 8 and TerraSAR-X multi-seasonal data (March-August 2014) covering a study area located in Lombardy region (Italy), we carried out an assessment of urban mapping performance using different non-parametric supervised classification algorithms and input features. The results show that best overall accuracy is generally reached with Random Forest (95.5%) and Support Vector Machines (93.6%), using both optical and SAR information. Adding X-band backscatter as input information produced an average accuracy improvement around 3%. Among various land cover classes, detection errors were concentrated on urban sparse fabric, and vegetated land cover, especially when SAR features are not used as input.\",\"PeriodicalId\":207233,\"journal\":{\"name\":\"2015 Joint Urban Remote Sensing Event (JURSE)\",\"volume\":\"233 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Joint Urban Remote Sensing Event (JURSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JURSE.2015.7120474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Joint Urban Remote Sensing Event (JURSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JURSE.2015.7120474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

准确的土地覆盖地图为参与城市监测和管理的科学家和决策者提供了关键信息。卫星遥感可以用于制作区域尺度的中分辨率城市地图,特别是当多光谱光学信息与SAR数据相结合时。从处理覆盖意大利伦巴第大区的Landsat 8和TerraSAR-X多季节数据(2014年3月- 8月)开始,我们使用不同的非参数监督分类算法和输入特征对城市制图性能进行了评估。结果表明,同时使用光学和SAR信息时,随机森林(95.5%)和支持向量机(93.6%)总体精度最高。添加x波段反向散射作为输入信息,平均精度提高了3%左右。在不同的土地覆盖类别中,检测误差主要集中在城市稀疏结构和植被覆盖上,特别是在不使用SAR特征作为输入的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of multi-seasonal Landsat 8 and TerraSAR-X data for urban mapping: An assessment
Accurate land cover maps provide critical information to scientists and decision-makers involved in urban monitoring and management. Satellite remote sensing can be used for producing mid-resolution urban maps at regional scale, especially when integrating multispectral optical information with SAR data. Starting from processing of Landsat 8 and TerraSAR-X multi-seasonal data (March-August 2014) covering a study area located in Lombardy region (Italy), we carried out an assessment of urban mapping performance using different non-parametric supervised classification algorithms and input features. The results show that best overall accuracy is generally reached with Random Forest (95.5%) and Support Vector Machines (93.6%), using both optical and SAR information. Adding X-band backscatter as input information produced an average accuracy improvement around 3%. Among various land cover classes, detection errors were concentrated on urban sparse fabric, and vegetated land cover, especially when SAR features are not used as input.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信