基于集成的多实例学习方法的比较

Pelin Yildirim Taser, K. Birant, Derya Birant
{"title":"基于集成的多实例学习方法的比较","authors":"Pelin Yildirim Taser, K. Birant, Derya Birant","doi":"10.1109/INISTA.2019.8778273","DOIUrl":null,"url":null,"abstract":"Multiple instance learning (MIL) is concerned with learning from training set of bags including multiple feature vectors. This paradigm has various algorithms as a solution for multiple instance problem. Recently, ensemble learning has become one of the most preferred machine learning technique because its high classification ability. The main goal of ensemble learning is combining multiple learning models and obtaining a decision from all outputs of these models. Considering this motivation, the study presented in this paper proposes an ensemble-based multiple instance learning approach which merges standard algorithms (MIWrapper and SimpleMI) with ensemble learning methods (Bagging and AdaBoost) to improve classification ability. The proposed approach includes ensemble of combination of MIWrapper and SimpleMI learners with Naive Bayes, Support Vector Machines (SVM), Neural Networks (Multilayer Perceptron (MLP)), and Decision Tree (C4.5) as base classifiers. In the experimental studies, the proposed ensemble-based approach was compared with individual MIWrapper and SimpleMI algorithms in terms of accuracy. The obtained results indicate that the ensemble-based approach shows higher classification ability than the conventional solutions.","PeriodicalId":262143,"journal":{"name":"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Comparison of Ensemble-Based Multiple Instance Learning Approaches\",\"authors\":\"Pelin Yildirim Taser, K. Birant, Derya Birant\",\"doi\":\"10.1109/INISTA.2019.8778273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple instance learning (MIL) is concerned with learning from training set of bags including multiple feature vectors. This paradigm has various algorithms as a solution for multiple instance problem. Recently, ensemble learning has become one of the most preferred machine learning technique because its high classification ability. The main goal of ensemble learning is combining multiple learning models and obtaining a decision from all outputs of these models. Considering this motivation, the study presented in this paper proposes an ensemble-based multiple instance learning approach which merges standard algorithms (MIWrapper and SimpleMI) with ensemble learning methods (Bagging and AdaBoost) to improve classification ability. The proposed approach includes ensemble of combination of MIWrapper and SimpleMI learners with Naive Bayes, Support Vector Machines (SVM), Neural Networks (Multilayer Perceptron (MLP)), and Decision Tree (C4.5) as base classifiers. In the experimental studies, the proposed ensemble-based approach was compared with individual MIWrapper and SimpleMI algorithms in terms of accuracy. The obtained results indicate that the ensemble-based approach shows higher classification ability than the conventional solutions.\",\"PeriodicalId\":262143,\"journal\":{\"name\":\"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INISTA.2019.8778273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2019.8778273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

多实例学习(MIL)是指从包含多个特征向量的训练集中学习。该范式具有多种算法作为多实例问题的解决方案。近年来,集成学习以其较高的分类能力成为最受青睐的机器学习技术之一。集成学习的主要目标是组合多个学习模型,并从这些模型的所有输出中获得决策。考虑到这一动机,本文提出了一种基于集成的多实例学习方法,该方法将标准算法(MIWrapper和SimpleMI)与集成学习方法(Bagging和AdaBoost)相结合,以提高分类能力。所提出的方法包括MIWrapper和SimpleMI学习器与朴素贝叶斯、支持向量机(SVM)、神经网络(多层感知器(MLP))和决策树(C4.5)作为基本分类器的组合。在实验研究中,提出的基于集成的方法在准确性方面与单独的MIWrapper和SimpleMI算法进行了比较。结果表明,基于集成的方法比传统方法具有更高的分类能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Ensemble-Based Multiple Instance Learning Approaches
Multiple instance learning (MIL) is concerned with learning from training set of bags including multiple feature vectors. This paradigm has various algorithms as a solution for multiple instance problem. Recently, ensemble learning has become one of the most preferred machine learning technique because its high classification ability. The main goal of ensemble learning is combining multiple learning models and obtaining a decision from all outputs of these models. Considering this motivation, the study presented in this paper proposes an ensemble-based multiple instance learning approach which merges standard algorithms (MIWrapper and SimpleMI) with ensemble learning methods (Bagging and AdaBoost) to improve classification ability. The proposed approach includes ensemble of combination of MIWrapper and SimpleMI learners with Naive Bayes, Support Vector Machines (SVM), Neural Networks (Multilayer Perceptron (MLP)), and Decision Tree (C4.5) as base classifiers. In the experimental studies, the proposed ensemble-based approach was compared with individual MIWrapper and SimpleMI algorithms in terms of accuracy. The obtained results indicate that the ensemble-based approach shows higher classification ability than the conventional solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信