利用遥感数据集挖掘城市树木清单的木材框架

Yiqun Xie, Han Bao, S. Shekhar, Joseph K. Knight
{"title":"利用遥感数据集挖掘城市树木清单的木材框架","authors":"Yiqun Xie, Han Bao, S. Shekhar, Joseph K. Knight","doi":"10.1109/ICDM.2018.00183","DOIUrl":null,"url":null,"abstract":"Tree inventories are important datasets for many societal applications (e.g., urban planning). However, tree inventories still remain unavailable in most urban areas. We aim to automate tree identification at individual levels in urban areas at a large scale using remote sensing datasets. The problem is challenging due to the complexity of the landscape in urban scenarios and the lack of ground truth data. In related work, tree identification algorithms have mainly focused on controlled forest regions where the landscape is mostly homogeneous with trees, making the methods difficult to generalize to urban environments. We propose a TIMBER framework to find individual trees in complex urban environments and a Core Object REduction (CORE) algorithm to improve the computational efficiency of TIMBER. Experiments show that TIMBER can efficiently detect urban trees with high accuracy.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A TIMBER Framework for Mining Urban Tree Inventories Using Remote Sensing Datasets\",\"authors\":\"Yiqun Xie, Han Bao, S. Shekhar, Joseph K. Knight\",\"doi\":\"10.1109/ICDM.2018.00183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tree inventories are important datasets for many societal applications (e.g., urban planning). However, tree inventories still remain unavailable in most urban areas. We aim to automate tree identification at individual levels in urban areas at a large scale using remote sensing datasets. The problem is challenging due to the complexity of the landscape in urban scenarios and the lack of ground truth data. In related work, tree identification algorithms have mainly focused on controlled forest regions where the landscape is mostly homogeneous with trees, making the methods difficult to generalize to urban environments. We propose a TIMBER framework to find individual trees in complex urban environments and a Core Object REduction (CORE) algorithm to improve the computational efficiency of TIMBER. Experiments show that TIMBER can efficiently detect urban trees with high accuracy.\",\"PeriodicalId\":286444,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2018.00183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

树木清单是许多社会应用(如城市规划)的重要数据集。但是,大多数城市地区仍然没有树木清单。我们的目标是利用遥感数据集在城市地区的个体水平上实现大规模的树木识别自动化。由于城市景观的复杂性和缺乏地面真实数据,这个问题具有挑战性。在相关工作中,树木识别算法主要集中在树木多为同质的受控林区,难以推广到城市环境。我们提出了一个在复杂城市环境中寻找单个树木的TIMBER框架,并提出了一个核心对象约简(Core)算法来提高TIMBER的计算效率。实验表明,该方法可以有效地检测城市树木,具有较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A TIMBER Framework for Mining Urban Tree Inventories Using Remote Sensing Datasets
Tree inventories are important datasets for many societal applications (e.g., urban planning). However, tree inventories still remain unavailable in most urban areas. We aim to automate tree identification at individual levels in urban areas at a large scale using remote sensing datasets. The problem is challenging due to the complexity of the landscape in urban scenarios and the lack of ground truth data. In related work, tree identification algorithms have mainly focused on controlled forest regions where the landscape is mostly homogeneous with trees, making the methods difficult to generalize to urban environments. We propose a TIMBER framework to find individual trees in complex urban environments and a Core Object REduction (CORE) algorithm to improve the computational efficiency of TIMBER. Experiments show that TIMBER can efficiently detect urban trees with high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信