纳尔逊逻辑

Thiago Nascimento, U. Rivieccio, J. Martin Marcos, M. Spinks
{"title":"纳尔逊逻辑","authors":"Thiago Nascimento, U. Rivieccio, J. Martin Marcos, M. Spinks","doi":"10.1093/jigpal/jzaa015","DOIUrl":null,"url":null,"abstract":"\n Besides the better-known Nelson logic ($\\mathcal{N}3$) and paraconsistent Nelson logic ($\\mathcal{N}4$), in 1959 David Nelson introduced, with motivations of realizability and constructibility, a logic called $\\mathcal{S}$. The logic $\\mathcal{S}$ was originally presented by means of a calculus (crucially lacking the contraction rule) with infinitely many rule schemata and no semantics (other than the intended interpretation into Arithmetic). We look here at the propositional fragment of $\\mathcal{S}$, showing that it is algebraizable (in fact, implicative), in the sense of Blok and Pigozzi, with respect to a variety of three-potent involutive residuated lattices. We thus introduce the first known algebraic semantics for $\\mathcal{S}$ as well as a finite Hilbert-style calculus equivalent to Nelson’s presentation; this also allows us to clarify the relation between $\\mathcal{S}$ and the other two Nelson logics $\\mathcal{N}3$ and $\\mathcal{N}4$.","PeriodicalId":304915,"journal":{"name":"Log. J. IGPL","volume":"2013 13","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nelson's logic ℒ\",\"authors\":\"Thiago Nascimento, U. Rivieccio, J. Martin Marcos, M. Spinks\",\"doi\":\"10.1093/jigpal/jzaa015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Besides the better-known Nelson logic ($\\\\mathcal{N}3$) and paraconsistent Nelson logic ($\\\\mathcal{N}4$), in 1959 David Nelson introduced, with motivations of realizability and constructibility, a logic called $\\\\mathcal{S}$. The logic $\\\\mathcal{S}$ was originally presented by means of a calculus (crucially lacking the contraction rule) with infinitely many rule schemata and no semantics (other than the intended interpretation into Arithmetic). We look here at the propositional fragment of $\\\\mathcal{S}$, showing that it is algebraizable (in fact, implicative), in the sense of Blok and Pigozzi, with respect to a variety of three-potent involutive residuated lattices. We thus introduce the first known algebraic semantics for $\\\\mathcal{S}$ as well as a finite Hilbert-style calculus equivalent to Nelson’s presentation; this also allows us to clarify the relation between $\\\\mathcal{S}$ and the other two Nelson logics $\\\\mathcal{N}3$ and $\\\\mathcal{N}4$.\",\"PeriodicalId\":304915,\"journal\":{\"name\":\"Log. J. IGPL\",\"volume\":\"2013 13\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. J. IGPL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzaa015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. J. IGPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jigpal/jzaa015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

除了更著名的Nelson逻辑($\mathcal{N}3$)和副一致性Nelson逻辑($\mathcal{N}4$),在1959年,David Nelson以可实现性和可构造性为动机,引入了一种名为$\mathcal{S}$的逻辑。逻辑$\mathcal{S}$最初是通过微积分的方式呈现的(关键是缺乏收缩规则),它有无限多的规则模式,没有语义(除了预期的算术解释)。我们在这里看看$\mathcal{S}$的命题片段,表明它是可代数的(实际上是隐含的),在block和Pigozzi的意义上,关于各种三幂对合剩余格。因此,我们引入了已知的$\mathcal{S}$的第一个代数语义以及等价于Nelson的表示的有限hilbert式演算;这也允许我们澄清$\mathcal{S}$与其他两个Nelson逻辑$\mathcal{N}3$和$\mathcal{N}4$之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nelson's logic ℒ
Besides the better-known Nelson logic ($\mathcal{N}3$) and paraconsistent Nelson logic ($\mathcal{N}4$), in 1959 David Nelson introduced, with motivations of realizability and constructibility, a logic called $\mathcal{S}$. The logic $\mathcal{S}$ was originally presented by means of a calculus (crucially lacking the contraction rule) with infinitely many rule schemata and no semantics (other than the intended interpretation into Arithmetic). We look here at the propositional fragment of $\mathcal{S}$, showing that it is algebraizable (in fact, implicative), in the sense of Blok and Pigozzi, with respect to a variety of three-potent involutive residuated lattices. We thus introduce the first known algebraic semantics for $\mathcal{S}$ as well as a finite Hilbert-style calculus equivalent to Nelson’s presentation; this also allows us to clarify the relation between $\mathcal{S}$ and the other two Nelson logics $\mathcal{N}3$ and $\mathcal{N}4$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信