象牙:学习网络自适应流代码

Salma Emara, Fei Wang, Isidor Kaplan, Baochun Li
{"title":"象牙:学习网络自适应流代码","authors":"Salma Emara, Fei Wang, Isidor Kaplan, Baochun Li","doi":"10.1109/IWQoS54832.2022.9812911","DOIUrl":null,"url":null,"abstract":"With the growing interest in web services during the current COVID-19 outbreak, the demand for high-quality low-latency interactive applications has never been more apparent. Yet, packet losses are inevitable over the Internet, since it is based on UDP. In this paper, we propose Ivory, a new real-world system framework designed to support network adaptive error control in real-time communications, such as VoIP, using a recently proposed low-latency streaming code. We design and implement our prototype over UDP that can correct or retransmit lost packets conditional on network conditions and application requirements.To maintain the highest quality, Ivory attempts to correct as many lost packets as possible on-the-fly, yet incurring the smallest footprint in terms of coding overhead over the network. To achieve such an objective, Ivory uses a deep reinforcement learning agent to estimate the best coding parameters in real-time based on observed network states and experience learned. It learns offline the best coding parameters to use based on previously observed loss patterns and takes into account the round-trip time observed to decide on the optimum decoding delay for a low-latency application. Our extensive array of experiments shows that Ivory achieves a better trade-off between recovering packets and using lower redundancy than the state-of-the-art network adaptive streaming codes algorithms.","PeriodicalId":353365,"journal":{"name":"2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ivory: Learning Network Adaptive Streaming Codes\",\"authors\":\"Salma Emara, Fei Wang, Isidor Kaplan, Baochun Li\",\"doi\":\"10.1109/IWQoS54832.2022.9812911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing interest in web services during the current COVID-19 outbreak, the demand for high-quality low-latency interactive applications has never been more apparent. Yet, packet losses are inevitable over the Internet, since it is based on UDP. In this paper, we propose Ivory, a new real-world system framework designed to support network adaptive error control in real-time communications, such as VoIP, using a recently proposed low-latency streaming code. We design and implement our prototype over UDP that can correct or retransmit lost packets conditional on network conditions and application requirements.To maintain the highest quality, Ivory attempts to correct as many lost packets as possible on-the-fly, yet incurring the smallest footprint in terms of coding overhead over the network. To achieve such an objective, Ivory uses a deep reinforcement learning agent to estimate the best coding parameters in real-time based on observed network states and experience learned. It learns offline the best coding parameters to use based on previously observed loss patterns and takes into account the round-trip time observed to decide on the optimum decoding delay for a low-latency application. Our extensive array of experiments shows that Ivory achieves a better trade-off between recovering packets and using lower redundancy than the state-of-the-art network adaptive streaming codes algorithms.\",\"PeriodicalId\":353365,\"journal\":{\"name\":\"2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWQoS54832.2022.9812911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQoS54832.2022.9812911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在当前的COVID-19爆发期间,随着人们对web服务的兴趣日益浓厚,对高质量低延迟交互式应用程序的需求从未如此明显。然而,由于互联网是基于UDP的,因此数据包丢失是不可避免的。在本文中,我们提出了Ivory,这是一个新的现实世界系统框架,旨在使用最近提出的低延迟流代码支持实时通信(如VoIP)中的网络自适应错误控制。我们设计并实现了基于UDP的原型,可以根据网络条件和应用需求纠正或重新传输丢失的数据包。为了保持最高的质量,Ivory尝试在运行中尽可能多地纠正丢失的数据包,同时在网络上产生最小的编码开销。为了实现这一目标,Ivory使用深度强化学习代理根据观察到的网络状态和学习到的经验实时估计最佳编码参数。它离线学习基于先前观察到的损耗模式使用的最佳编码参数,并考虑观察到的往返时间来决定低延迟应用程序的最佳解码延迟。我们大量的实验表明,与最先进的网络自适应流码算法相比,Ivory在恢复数据包和使用更低冗余之间实现了更好的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ivory: Learning Network Adaptive Streaming Codes
With the growing interest in web services during the current COVID-19 outbreak, the demand for high-quality low-latency interactive applications has never been more apparent. Yet, packet losses are inevitable over the Internet, since it is based on UDP. In this paper, we propose Ivory, a new real-world system framework designed to support network adaptive error control in real-time communications, such as VoIP, using a recently proposed low-latency streaming code. We design and implement our prototype over UDP that can correct or retransmit lost packets conditional on network conditions and application requirements.To maintain the highest quality, Ivory attempts to correct as many lost packets as possible on-the-fly, yet incurring the smallest footprint in terms of coding overhead over the network. To achieve such an objective, Ivory uses a deep reinforcement learning agent to estimate the best coding parameters in real-time based on observed network states and experience learned. It learns offline the best coding parameters to use based on previously observed loss patterns and takes into account the round-trip time observed to decide on the optimum decoding delay for a low-latency application. Our extensive array of experiments shows that Ivory achieves a better trade-off between recovering packets and using lower redundancy than the state-of-the-art network adaptive streaming codes algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信