{"title":"一种具有自干扰抑制能力的认知无线网络路由方案","authors":"Rawan F. El Khatib, H. Salameh","doi":"10.1109/SDS.2017.7939135","DOIUrl":null,"url":null,"abstract":"In this work, we investigate the routing and channel assignment problem in Self-Interference Suppression (SIS)-enabled CRNs, where FD communication is possible. Specifically, we propose a novel metric called “Path Capacity” that reflects the number of links that can be simultaneously activated across a given path while using the minimum possible spectrum resources. Accordingly, we develop a novel routing scheme that selects the best path along with the channel assignment such that the highest capacity is achieved. We analytically formulate the routing problem as a route selection and channel assignment optimization, with the objective of minimizing the required number of distinct channels for each CR source-destination pair. We show that the optimization problem is a Binary Quadratic Programming (BQP) problem, which is, in general, NP-hard. Accordingly, we present a sequential fixing procedure that provides a near-optimal solution. Simulation results are provided, which show that a careful routing and channel assignment in SIS-enabled CRNs can significantly improve network performance.","PeriodicalId":326125,"journal":{"name":"2017 Fourth International Conference on Software Defined Systems (SDS)","volume":"76 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A routing scheme for Cognitive Radio networks with Self-Interference Suppression capabilities\",\"authors\":\"Rawan F. El Khatib, H. Salameh\",\"doi\":\"10.1109/SDS.2017.7939135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we investigate the routing and channel assignment problem in Self-Interference Suppression (SIS)-enabled CRNs, where FD communication is possible. Specifically, we propose a novel metric called “Path Capacity” that reflects the number of links that can be simultaneously activated across a given path while using the minimum possible spectrum resources. Accordingly, we develop a novel routing scheme that selects the best path along with the channel assignment such that the highest capacity is achieved. We analytically formulate the routing problem as a route selection and channel assignment optimization, with the objective of minimizing the required number of distinct channels for each CR source-destination pair. We show that the optimization problem is a Binary Quadratic Programming (BQP) problem, which is, in general, NP-hard. Accordingly, we present a sequential fixing procedure that provides a near-optimal solution. Simulation results are provided, which show that a careful routing and channel assignment in SIS-enabled CRNs can significantly improve network performance.\",\"PeriodicalId\":326125,\"journal\":{\"name\":\"2017 Fourth International Conference on Software Defined Systems (SDS)\",\"volume\":\"76 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Fourth International Conference on Software Defined Systems (SDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SDS.2017.7939135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fourth International Conference on Software Defined Systems (SDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDS.2017.7939135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A routing scheme for Cognitive Radio networks with Self-Interference Suppression capabilities
In this work, we investigate the routing and channel assignment problem in Self-Interference Suppression (SIS)-enabled CRNs, where FD communication is possible. Specifically, we propose a novel metric called “Path Capacity” that reflects the number of links that can be simultaneously activated across a given path while using the minimum possible spectrum resources. Accordingly, we develop a novel routing scheme that selects the best path along with the channel assignment such that the highest capacity is achieved. We analytically formulate the routing problem as a route selection and channel assignment optimization, with the objective of minimizing the required number of distinct channels for each CR source-destination pair. We show that the optimization problem is a Binary Quadratic Programming (BQP) problem, which is, in general, NP-hard. Accordingly, we present a sequential fixing procedure that provides a near-optimal solution. Simulation results are provided, which show that a careful routing and channel assignment in SIS-enabled CRNs can significantly improve network performance.