基于人工神经网络的状态和故障估计

Dhouha Miri, Atef Khedher, K. BenOthman
{"title":"基于人工神经网络的状态和故障估计","authors":"Dhouha Miri, Atef Khedher, K. BenOthman","doi":"10.1109/STA50679.2020.9329322","DOIUrl":null,"url":null,"abstract":"This paper deals with the state and fault estimation for non linear systems modeled using the Takagi Sugeno approach. An artificial neural network with unknown inputs is used in the objective of estimate state and faults affecting the system. Firstly, the problem of state estimation is considered. In second step, the proposed approach is extended to the actuator fault estimations. The proposed method is applied to an academic example to show its efficiency.","PeriodicalId":158545,"journal":{"name":"2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","volume":"6 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"State and faults estimation via Artificial Neural Networks\",\"authors\":\"Dhouha Miri, Atef Khedher, K. BenOthman\",\"doi\":\"10.1109/STA50679.2020.9329322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the state and fault estimation for non linear systems modeled using the Takagi Sugeno approach. An artificial neural network with unknown inputs is used in the objective of estimate state and faults affecting the system. Firstly, the problem of state estimation is considered. In second step, the proposed approach is extended to the actuator fault estimations. The proposed method is applied to an academic example to show its efficiency.\",\"PeriodicalId\":158545,\"journal\":{\"name\":\"2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)\",\"volume\":\"6 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STA50679.2020.9329322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STA50679.2020.9329322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了用Takagi Sugeno方法建模的非线性系统的状态和故障估计。采用未知输入的人工神经网络来估计影响系统的状态和故障。首先,考虑了状态估计问题。第二步,将该方法推广到执行器故障估计中。通过实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State and faults estimation via Artificial Neural Networks
This paper deals with the state and fault estimation for non linear systems modeled using the Takagi Sugeno approach. An artificial neural network with unknown inputs is used in the objective of estimate state and faults affecting the system. Firstly, the problem of state estimation is considered. In second step, the proposed approach is extended to the actuator fault estimations. The proposed method is applied to an academic example to show its efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信