在检测前通过跟踪估计最大似然信号参数

Murat Uney, B. Mulgrew, Daniel E. Clark
{"title":"在检测前通过跟踪估计最大似然信号参数","authors":"Murat Uney, B. Mulgrew, Daniel E. Clark","doi":"10.1109/SSPD.2015.7288511","DOIUrl":null,"url":null,"abstract":"In this work, we consider the front-end processing for an active sensor. We are interested in estimating signal amplitude and noise power based on the outputs from filters that match transmitted waveforms at different ranges and bearing angles. These parameters identify the distributions in, for example, likelihood ratio tests used by detection algorithms and characterise the probability of detection and false alarm rates. Because they are observed through measurements induced by a (hidden) target process, the associated parameter likelihood has a time recursive structure which involves estimation of the target state based on the filter outputs. We use a track-before-detect scheme for maintaining a Bernoulli target model and updating the parameter likelihood. We use a maximum likelihood strategy and demonstrate the efficacy of the proposed approach with an example.","PeriodicalId":212668,"journal":{"name":"2015 Sensor Signal Processing for Defence (SSPD)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Maximum Likelihood Signal Parameter Estimation via Track Before Detect\",\"authors\":\"Murat Uney, B. Mulgrew, Daniel E. Clark\",\"doi\":\"10.1109/SSPD.2015.7288511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we consider the front-end processing for an active sensor. We are interested in estimating signal amplitude and noise power based on the outputs from filters that match transmitted waveforms at different ranges and bearing angles. These parameters identify the distributions in, for example, likelihood ratio tests used by detection algorithms and characterise the probability of detection and false alarm rates. Because they are observed through measurements induced by a (hidden) target process, the associated parameter likelihood has a time recursive structure which involves estimation of the target state based on the filter outputs. We use a track-before-detect scheme for maintaining a Bernoulli target model and updating the parameter likelihood. We use a maximum likelihood strategy and demonstrate the efficacy of the proposed approach with an example.\",\"PeriodicalId\":212668,\"journal\":{\"name\":\"2015 Sensor Signal Processing for Defence (SSPD)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Sensor Signal Processing for Defence (SSPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSPD.2015.7288511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Sensor Signal Processing for Defence (SSPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSPD.2015.7288511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在这项工作中,我们考虑了主动传感器的前端处理。我们感兴趣的是基于滤波器的输出来估计信号幅度和噪声功率,这些滤波器匹配不同范围和方位角度的传输波形。例如,这些参数确定检测算法使用的似然比测试中的分布,并表征检测概率和误报率。由于它们是通过由(隐藏的)目标过程引起的测量来观察的,因此相关的参数似然具有时间递归结构,该结构涉及基于滤波器输出的目标状态估计。我们使用检测前跟踪方案来维持伯努利目标模型和更新参数似然。我们使用了最大似然策略,并通过一个例子证明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum Likelihood Signal Parameter Estimation via Track Before Detect
In this work, we consider the front-end processing for an active sensor. We are interested in estimating signal amplitude and noise power based on the outputs from filters that match transmitted waveforms at different ranges and bearing angles. These parameters identify the distributions in, for example, likelihood ratio tests used by detection algorithms and characterise the probability of detection and false alarm rates. Because they are observed through measurements induced by a (hidden) target process, the associated parameter likelihood has a time recursive structure which involves estimation of the target state based on the filter outputs. We use a track-before-detect scheme for maintaining a Bernoulli target model and updating the parameter likelihood. We use a maximum likelihood strategy and demonstrate the efficacy of the proposed approach with an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信