基于超分辨率技术的多光谱图像贝叶斯重建参数估计

R. Molina, M. Vega, J. Mateos, A. Katsaggelos
{"title":"基于超分辨率技术的多光谱图像贝叶斯重建参数估计","authors":"R. Molina, M. Vega, J. Mateos, A. Katsaggelos","doi":"10.1109/ICIP.2006.312720","DOIUrl":null,"url":null,"abstract":"In this paper we present a new super resolution Bayesian method for pansharpening of multispectral images which: a) incorporates prior knowledge on the expected characteristics of the multispectral images, b) uses the sensor characteristics to model the observation process of both panchromatic and multispectral images, and c) performs the estimation of all the unknown parameters in the model. Using real data, the pansharpened multispectral images are compared with the images obtained by other pansharpening methods and their quality is assessed both qualitatively and quantitatively.","PeriodicalId":299355,"journal":{"name":"2006 International Conference on Image Processing","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Parameter Estimation in Bayesian Reconstruction of Multispectral Images using Super Resolution Techniques\",\"authors\":\"R. Molina, M. Vega, J. Mateos, A. Katsaggelos\",\"doi\":\"10.1109/ICIP.2006.312720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a new super resolution Bayesian method for pansharpening of multispectral images which: a) incorporates prior knowledge on the expected characteristics of the multispectral images, b) uses the sensor characteristics to model the observation process of both panchromatic and multispectral images, and c) performs the estimation of all the unknown parameters in the model. Using real data, the pansharpened multispectral images are compared with the images obtained by other pansharpening methods and their quality is assessed both qualitatively and quantitatively.\",\"PeriodicalId\":299355,\"journal\":{\"name\":\"2006 International Conference on Image Processing\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2006.312720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2006.312720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种新的超分辨率贝叶斯多光谱图像泛锐化方法,该方法包括:a)结合多光谱图像预期特征的先验知识;b)利用传感器特征对全色和多光谱图像的观测过程进行建模;c)对模型中所有未知参数进行估计。利用实际数据,将潘锐化后的多光谱图像与其他潘锐化方法得到的图像进行了比较,并对其质量进行了定性和定量评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter Estimation in Bayesian Reconstruction of Multispectral Images using Super Resolution Techniques
In this paper we present a new super resolution Bayesian method for pansharpening of multispectral images which: a) incorporates prior knowledge on the expected characteristics of the multispectral images, b) uses the sensor characteristics to model the observation process of both panchromatic and multispectral images, and c) performs the estimation of all the unknown parameters in the model. Using real data, the pansharpened multispectral images are compared with the images obtained by other pansharpening methods and their quality is assessed both qualitatively and quantitatively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信