高维闵可夫斯基时空的exptime -硬度

R. Hirsch, Brett McLean
{"title":"高维闵可夫斯基时空的exptime -硬度","authors":"R. Hirsch, Brett McLean","doi":"10.48550/arXiv.2206.06866","DOIUrl":null,"url":null,"abstract":"We prove the EXPTIME-hardness of the validity problem for the basic temporal logic on Minkowski spacetime with more than one space dimension. We prove this result for both the lightspeed-or-slower and the slower-than-light accessibility relations (and for both the irreflexive and the reflexive versions of these relations). As an auxiliary result, we prove the EXPTIME-hardness of validity on any frame for which there exists an embedding of the infinite complete binary tree satisfying certain conditions. The proof is by a reduction from the two-player corridor-tiling game.","PeriodicalId":129696,"journal":{"name":"Advances in Modal Logic","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXPTIME-hardness of higher-dimensional Minkowski spacetime\",\"authors\":\"R. Hirsch, Brett McLean\",\"doi\":\"10.48550/arXiv.2206.06866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the EXPTIME-hardness of the validity problem for the basic temporal logic on Minkowski spacetime with more than one space dimension. We prove this result for both the lightspeed-or-slower and the slower-than-light accessibility relations (and for both the irreflexive and the reflexive versions of these relations). As an auxiliary result, we prove the EXPTIME-hardness of validity on any frame for which there exists an embedding of the infinite complete binary tree satisfying certain conditions. The proof is by a reduction from the two-player corridor-tiling game.\",\"PeriodicalId\":129696,\"journal\":{\"name\":\"Advances in Modal Logic\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Modal Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2206.06866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Modal Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.06866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在多维闵可夫斯基时空上证明了基本时间逻辑有效性问题的exptime -硬度。我们对光速或慢速可及性关系和比光速慢速可及性关系(以及这些关系的非自反性和自反性版本)证明了这个结果。作为辅助结果,我们证明了在存在满足一定条件的无限完全二叉树嵌入的任意框架上,EXPTIME-hardness的有效性。这可以从双人走廊铺砖游戏中得到证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EXPTIME-hardness of higher-dimensional Minkowski spacetime
We prove the EXPTIME-hardness of the validity problem for the basic temporal logic on Minkowski spacetime with more than one space dimension. We prove this result for both the lightspeed-or-slower and the slower-than-light accessibility relations (and for both the irreflexive and the reflexive versions of these relations). As an auxiliary result, we prove the EXPTIME-hardness of validity on any frame for which there exists an embedding of the infinite complete binary tree satisfying certain conditions. The proof is by a reduction from the two-player corridor-tiling game.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信