Jingbo Zhu, Huizhen Wang, Benjamin Ka-Yin T'sou, Muhua Zhu
{"title":"从文本审查中进行多方面的民意调查","authors":"Jingbo Zhu, Huizhen Wang, Benjamin Ka-Yin T'sou, Muhua Zhu","doi":"10.1145/1645953.1646233","DOIUrl":null,"url":null,"abstract":"This paper presents an unsupervised approach to aspect-based opinion polling from raw textual reviews without explicit ratings. The key contribution of this paper is three-fold. First, a multi-aspect bootstrapping algorithm is proposed to learn from unlabeled data aspect-related terms of each aspect to be used for aspect identification. Second, an unsupervised segmentation model is proposed to address the challenge of identifying multiple single-aspect units in a multi-aspect sentence. Finally, an aspect-based opinion polling algorithm is presented. Experiments on real Chinese restaurant reviews show that our opinion polling method can achieve 75.5% precision performance.","PeriodicalId":286251,"journal":{"name":"Proceedings of the 18th ACM conference on Information and knowledge management","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"122","resultStr":"{\"title\":\"Multi-aspect opinion polling from textual reviews\",\"authors\":\"Jingbo Zhu, Huizhen Wang, Benjamin Ka-Yin T'sou, Muhua Zhu\",\"doi\":\"10.1145/1645953.1646233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an unsupervised approach to aspect-based opinion polling from raw textual reviews without explicit ratings. The key contribution of this paper is three-fold. First, a multi-aspect bootstrapping algorithm is proposed to learn from unlabeled data aspect-related terms of each aspect to be used for aspect identification. Second, an unsupervised segmentation model is proposed to address the challenge of identifying multiple single-aspect units in a multi-aspect sentence. Finally, an aspect-based opinion polling algorithm is presented. Experiments on real Chinese restaurant reviews show that our opinion polling method can achieve 75.5% precision performance.\",\"PeriodicalId\":286251,\"journal\":{\"name\":\"Proceedings of the 18th ACM conference on Information and knowledge management\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"122\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th ACM conference on Information and knowledge management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1645953.1646233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1645953.1646233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents an unsupervised approach to aspect-based opinion polling from raw textual reviews without explicit ratings. The key contribution of this paper is three-fold. First, a multi-aspect bootstrapping algorithm is proposed to learn from unlabeled data aspect-related terms of each aspect to be used for aspect identification. Second, an unsupervised segmentation model is proposed to address the challenge of identifying multiple single-aspect units in a multi-aspect sentence. Finally, an aspect-based opinion polling algorithm is presented. Experiments on real Chinese restaurant reviews show that our opinion polling method can achieve 75.5% precision performance.