{"title":"统计参数语音合成中具有直观韵律特征的说话人自适应","authors":"Pengyu Cheng, Zhenhua Ling","doi":"10.1145/3529570.3529602","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method of speaker adaption with intuitive prosodic features for statistical parametric speech synthesis. The intuitive prosodic features employed in this method include pitch, pitch range, speech rate and energy considering that they are directly related with the overall prosodic characteristics of different speakers. The intuitive prosodic features are extracted at utterance-level or speaker-level, and are further integrated into the existing speaker-encoding-based and speaker-embedding-based adaptation frameworks respectively. The acoustic models are sequence-to-sequence ones based on Tacotron2. Intuitive prosodic features are concatenated with text encoder outputs and speaker vectors for decoding acoustic features. Experimental results have demonstrated that our proposed methods can achieve better objective and subjective performance than the baseline methods without intuitive prosodic features. Besides, the proposed speaker adaption method with utterance-level prosodic features has achieved the best similarity of synthetic speech among all compared methods.","PeriodicalId":430367,"journal":{"name":"Proceedings of the 6th International Conference on Digital Signal Processing","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speaker Adaption with Intuitive Prosodic Features for Statistical Parametric Speech Synthesis\",\"authors\":\"Pengyu Cheng, Zhenhua Ling\",\"doi\":\"10.1145/3529570.3529602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a method of speaker adaption with intuitive prosodic features for statistical parametric speech synthesis. The intuitive prosodic features employed in this method include pitch, pitch range, speech rate and energy considering that they are directly related with the overall prosodic characteristics of different speakers. The intuitive prosodic features are extracted at utterance-level or speaker-level, and are further integrated into the existing speaker-encoding-based and speaker-embedding-based adaptation frameworks respectively. The acoustic models are sequence-to-sequence ones based on Tacotron2. Intuitive prosodic features are concatenated with text encoder outputs and speaker vectors for decoding acoustic features. Experimental results have demonstrated that our proposed methods can achieve better objective and subjective performance than the baseline methods without intuitive prosodic features. Besides, the proposed speaker adaption method with utterance-level prosodic features has achieved the best similarity of synthetic speech among all compared methods.\",\"PeriodicalId\":430367,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Digital Signal Processing\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Digital Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3529570.3529602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529570.3529602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Speaker Adaption with Intuitive Prosodic Features for Statistical Parametric Speech Synthesis
In this paper, we propose a method of speaker adaption with intuitive prosodic features for statistical parametric speech synthesis. The intuitive prosodic features employed in this method include pitch, pitch range, speech rate and energy considering that they are directly related with the overall prosodic characteristics of different speakers. The intuitive prosodic features are extracted at utterance-level or speaker-level, and are further integrated into the existing speaker-encoding-based and speaker-embedding-based adaptation frameworks respectively. The acoustic models are sequence-to-sequence ones based on Tacotron2. Intuitive prosodic features are concatenated with text encoder outputs and speaker vectors for decoding acoustic features. Experimental results have demonstrated that our proposed methods can achieve better objective and subjective performance than the baseline methods without intuitive prosodic features. Besides, the proposed speaker adaption method with utterance-level prosodic features has achieved the best similarity of synthetic speech among all compared methods.