一种处理决策树缺失值的概率方法的复杂性

Lamis Hawarah, A. Simonet, M. Simonet
{"title":"一种处理决策树缺失值的概率方法的复杂性","authors":"Lamis Hawarah, A. Simonet, M. Simonet","doi":"10.1109/SYNASC.2006.70","DOIUrl":null,"url":null,"abstract":"We describe the complexity of an approach to fill missing values in decision trees during classification. This approach is derived from the ordered attribute trees method which builds a decision tree for each attribute and uses these trees to fill the missing attribute values. Both our approach and theirs are based on the mutual information between the attributes and the class. Our method takes into account the dependence between attributes by using mutual information. The result of the classification process is a probability distribution instead of a single class. In this paper, we explain our classification algorithm. We then calculate the complexity of constructing the attribute trees and the complexity of classifying a new instance with missing values using our classification algorithm","PeriodicalId":309740,"journal":{"name":"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Complexity of a Probabilistic Approach to Deal with Missing Values in a Decision Tree\",\"authors\":\"Lamis Hawarah, A. Simonet, M. Simonet\",\"doi\":\"10.1109/SYNASC.2006.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the complexity of an approach to fill missing values in decision trees during classification. This approach is derived from the ordered attribute trees method which builds a decision tree for each attribute and uses these trees to fill the missing attribute values. Both our approach and theirs are based on the mutual information between the attributes and the class. Our method takes into account the dependence between attributes by using mutual information. The result of the classification process is a probability distribution instead of a single class. In this paper, we explain our classification algorithm. We then calculate the complexity of constructing the attribute trees and the complexity of classifying a new instance with missing values using our classification algorithm\",\"PeriodicalId\":309740,\"journal\":{\"name\":\"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2006.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2006.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们描述了在分类过程中填充决策树中缺失值的方法的复杂性。该方法派生自有序属性树方法,该方法为每个属性构建决策树,并使用这些树来填充缺失的属性值。我们的方法和他们的方法都是基于属性和类之间的相互信息。我们的方法利用互信息来考虑属性之间的依赖关系。分类过程的结果是一个概率分布,而不是一个单一的类。在本文中,我们解释了我们的分类算法。然后,我们计算了构造属性树的复杂性和使用我们的分类算法对具有缺失值的新实例进行分类的复杂性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Complexity of a Probabilistic Approach to Deal with Missing Values in a Decision Tree
We describe the complexity of an approach to fill missing values in decision trees during classification. This approach is derived from the ordered attribute trees method which builds a decision tree for each attribute and uses these trees to fill the missing attribute values. Both our approach and theirs are based on the mutual information between the attributes and the class. Our method takes into account the dependence between attributes by using mutual information. The result of the classification process is a probability distribution instead of a single class. In this paper, we explain our classification algorithm. We then calculate the complexity of constructing the attribute trees and the complexity of classifying a new instance with missing values using our classification algorithm
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信