Jun Chen, J. Gel, Brandon K. Chen, Zheng Gong, Chao Zhou, Chaoyang Shi, Changhai Ru, Huayan Pu, Yan Peng, Shaorong Xie, Yu Sun
{"title":"自动sem引导AFM扫描与动态变化的扫描速度","authors":"Jun Chen, J. Gel, Brandon K. Chen, Zheng Gong, Chao Zhou, Chaoyang Shi, Changhai Ru, Huayan Pu, Yan Peng, Shaorong Xie, Yu Sun","doi":"10.1109/MARSS.2018.8481201","DOIUrl":null,"url":null,"abstract":"Ahstract- For imaging nano-scaled samples, atomic force microscopy (AFM) and scanning electron microscopy (SEM) represent two complementary imaging techniques. In a hybrid SEM-AFM system, a compact AFM is installed inside the high vacuum chamber of an SEM, where SEM provides largely 2D imaging and material compositions of a sample while AFM is capable of complementarily measuring 3D topography of the sample. Although SEM can achieve real-time imaging (e.g., 20 Hz), AFM scan can take minutes to generate an image, demanding strategies for speeding up AFM measurement. In existing hybrid SEM-AFM systems, SEM and AFM measurements are made independently. This paper presents, for the first time, a technique of using SEM nanoscopic imaging to guide the scan speed of AFM imaging. The dynamic variation of AFM scan speed is based on features identified in SEM imaging. Information/features are extracted from real-time SEM images and quantitated using local entropy and other metrics. The generated feature metric map is used to produce a speed map for varying AFM scan speed at each position on the sample. Experiments were conducted with a new SEM-compatible AFM instrument we recently developed, as the test bed of the SEM-guided AFM scan technique. The results for the samples measured in this work demonstrate that time savings of this technique, compared to traditional AFM scan using a constant speed, were up to 66% with equivalent imaging accuracy obtained with traditional fine scan. With the same time cost of traditional fast scan, the SEM -guided AFM scan technique had an accuracy improvement of 47%.","PeriodicalId":118389,"journal":{"name":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automated SEM-Guided AFM Scan with Dynamically Varied Scan Speed\",\"authors\":\"Jun Chen, J. Gel, Brandon K. Chen, Zheng Gong, Chao Zhou, Chaoyang Shi, Changhai Ru, Huayan Pu, Yan Peng, Shaorong Xie, Yu Sun\",\"doi\":\"10.1109/MARSS.2018.8481201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ahstract- For imaging nano-scaled samples, atomic force microscopy (AFM) and scanning electron microscopy (SEM) represent two complementary imaging techniques. In a hybrid SEM-AFM system, a compact AFM is installed inside the high vacuum chamber of an SEM, where SEM provides largely 2D imaging and material compositions of a sample while AFM is capable of complementarily measuring 3D topography of the sample. Although SEM can achieve real-time imaging (e.g., 20 Hz), AFM scan can take minutes to generate an image, demanding strategies for speeding up AFM measurement. In existing hybrid SEM-AFM systems, SEM and AFM measurements are made independently. This paper presents, for the first time, a technique of using SEM nanoscopic imaging to guide the scan speed of AFM imaging. The dynamic variation of AFM scan speed is based on features identified in SEM imaging. Information/features are extracted from real-time SEM images and quantitated using local entropy and other metrics. The generated feature metric map is used to produce a speed map for varying AFM scan speed at each position on the sample. Experiments were conducted with a new SEM-compatible AFM instrument we recently developed, as the test bed of the SEM-guided AFM scan technique. The results for the samples measured in this work demonstrate that time savings of this technique, compared to traditional AFM scan using a constant speed, were up to 66% with equivalent imaging accuracy obtained with traditional fine scan. With the same time cost of traditional fast scan, the SEM -guided AFM scan technique had an accuracy improvement of 47%.\",\"PeriodicalId\":118389,\"journal\":{\"name\":\"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MARSS.2018.8481201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MARSS.2018.8481201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automated SEM-Guided AFM Scan with Dynamically Varied Scan Speed
Ahstract- For imaging nano-scaled samples, atomic force microscopy (AFM) and scanning electron microscopy (SEM) represent two complementary imaging techniques. In a hybrid SEM-AFM system, a compact AFM is installed inside the high vacuum chamber of an SEM, where SEM provides largely 2D imaging and material compositions of a sample while AFM is capable of complementarily measuring 3D topography of the sample. Although SEM can achieve real-time imaging (e.g., 20 Hz), AFM scan can take minutes to generate an image, demanding strategies for speeding up AFM measurement. In existing hybrid SEM-AFM systems, SEM and AFM measurements are made independently. This paper presents, for the first time, a technique of using SEM nanoscopic imaging to guide the scan speed of AFM imaging. The dynamic variation of AFM scan speed is based on features identified in SEM imaging. Information/features are extracted from real-time SEM images and quantitated using local entropy and other metrics. The generated feature metric map is used to produce a speed map for varying AFM scan speed at each position on the sample. Experiments were conducted with a new SEM-compatible AFM instrument we recently developed, as the test bed of the SEM-guided AFM scan technique. The results for the samples measured in this work demonstrate that time savings of this technique, compared to traditional AFM scan using a constant speed, were up to 66% with equivalent imaging accuracy obtained with traditional fine scan. With the same time cost of traditional fast scan, the SEM -guided AFM scan technique had an accuracy improvement of 47%.