基于粗数据单调回波序列网络的锂离子电池模型识别

Log. J. IGPL Pub Date : 2020-01-15 DOI:10.1093/jigpal/jzz075
Antonio Álvarez-Caballero, C. B. Viejo, Inés Couso, L. Sánchez
{"title":"基于粗数据单调回波序列网络的锂离子电池模型识别","authors":"Antonio Álvarez-Caballero, C. B. Viejo, Inés Couso, L. Sánchez","doi":"10.1093/jigpal/jzz075","DOIUrl":null,"url":null,"abstract":"\n Monotone transformation models are extended to inaccurate data and are combined with recurrent neural networks in a new battery model that is able to ascertain the health of rechargeable batteries for automotive applications. The presented method exploits the information contained in the vehicle’s operational records better than other cutting-edge models and uses a minimum amount of human expert knowledge. The experimental validation of the technique includes a comparative analysis of batteries in different health conditions, comprising first-principles models and different machine learning procedures.","PeriodicalId":304915,"journal":{"name":"Log. J. IGPL","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Li-ion battery models through monotonic echo serial networks for coarse data\",\"authors\":\"Antonio Álvarez-Caballero, C. B. Viejo, Inés Couso, L. Sánchez\",\"doi\":\"10.1093/jigpal/jzz075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Monotone transformation models are extended to inaccurate data and are combined with recurrent neural networks in a new battery model that is able to ascertain the health of rechargeable batteries for automotive applications. The presented method exploits the information contained in the vehicle’s operational records better than other cutting-edge models and uses a minimum amount of human expert knowledge. The experimental validation of the technique includes a comparative analysis of batteries in different health conditions, comprising first-principles models and different machine learning procedures.\",\"PeriodicalId\":304915,\"journal\":{\"name\":\"Log. J. IGPL\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. J. IGPL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzz075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. J. IGPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jigpal/jzz075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将单调变换模型扩展到不准确的数据,并与递归神经网络相结合,建立了一种新的电池模型,能够确定汽车用可充电电池的健康状况。与其他尖端模型相比,该方法更好地利用了车辆运行记录中包含的信息,并且使用了最少的人类专家知识。该技术的实验验证包括对不同健康状况下的电池进行比较分析,包括第一原理模型和不同的机器学习程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Li-ion battery models through monotonic echo serial networks for coarse data
Monotone transformation models are extended to inaccurate data and are combined with recurrent neural networks in a new battery model that is able to ascertain the health of rechargeable batteries for automotive applications. The presented method exploits the information contained in the vehicle’s operational records better than other cutting-edge models and uses a minimum amount of human expert knowledge. The experimental validation of the technique includes a comparative analysis of batteries in different health conditions, comprising first-principles models and different machine learning procedures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信