关于广义导数的范数

Odero Adhiambo Beatrice, J. O. Agure, F. Nyamwala
{"title":"关于广义导数的范数","authors":"Odero Adhiambo Beatrice, J. O. Agure, F. Nyamwala","doi":"10.12988/pms.2019.9810","DOIUrl":null,"url":null,"abstract":"Let H be an infinite dimensional complex Hilbert space and B(H) the algebra of all bounded linear operators on H. For two bounded operators A,B ∈ B(H), the map δAB : B(H)→ B(H) is a generalized inner derivation operator induced by A and B defined by δAB(X) = AX −XB (1) In this paper we show that the norm of a generalized inner derivation operator is given by ‖(δAB/B(B(H)))‖ = ‖A‖+‖B‖ for all A,B ∈ B(H). Mathematics Subject Classification: Primary 47A30, Secondary 47L25","PeriodicalId":155967,"journal":{"name":"Pure Mathematical Sciences","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Norm of a Generalized Derivation\",\"authors\":\"Odero Adhiambo Beatrice, J. O. Agure, F. Nyamwala\",\"doi\":\"10.12988/pms.2019.9810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let H be an infinite dimensional complex Hilbert space and B(H) the algebra of all bounded linear operators on H. For two bounded operators A,B ∈ B(H), the map δAB : B(H)→ B(H) is a generalized inner derivation operator induced by A and B defined by δAB(X) = AX −XB (1) In this paper we show that the norm of a generalized inner derivation operator is given by ‖(δAB/B(B(H)))‖ = ‖A‖+‖B‖ for all A,B ∈ B(H). Mathematics Subject Classification: Primary 47A30, Secondary 47L25\",\"PeriodicalId\":155967,\"journal\":{\"name\":\"Pure Mathematical Sciences\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/pms.2019.9810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/pms.2019.9810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设H是无限维复希尔伯特空间,B (H)是H上所有有界线性算子的代数。对于两个有界算子A,B∈B(H),映射δAB: B(H)→B(H)是由A和B诱导的广义内导数算子,由δAB(X) = AX−XB(1)定义。本文证明了对于所有A,B∈B(H),广义内导数算子的范数为‖(δAB/B(B(H))‖=‖A‖+‖B‖。数学学科分类:小学47A30,中学47L25
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Norm of a Generalized Derivation
Let H be an infinite dimensional complex Hilbert space and B(H) the algebra of all bounded linear operators on H. For two bounded operators A,B ∈ B(H), the map δAB : B(H)→ B(H) is a generalized inner derivation operator induced by A and B defined by δAB(X) = AX −XB (1) In this paper we show that the norm of a generalized inner derivation operator is given by ‖(δAB/B(B(H)))‖ = ‖A‖+‖B‖ for all A,B ∈ B(H). Mathematics Subject Classification: Primary 47A30, Secondary 47L25
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信