Z/下标m/上的低次多项式近似的下界

N. Alon, R. Beigel
{"title":"Z/下标m/上的低次多项式近似的下界","authors":"N. Alon, R. Beigel","doi":"10.1109/CCC.2001.933885","DOIUrl":null,"url":null,"abstract":"We use a Ramsey-theoretic argument to obtain the first lower bounds for approximations over Z/sub m/ by nonlinear polynomials: (i) A degree-2 polynomial over Z/sub m/ (m odd) must differ from the parity function on at least a 1/2-1/2((log n)/sup /spl Omega/(1)/) fraction of all points in the Boolean n-cube. A degree-O(1) polynomial over Z/sub m/ (m odd) must differ from the parity function on at least a 1/2-o(1) fraction of all points in the Boolean n-cube. These nonapproximability results imply the first known lower bounds on the top fanin of MAJoMOD/sub m/oAND/sub O(1)/ circuits (i.e., circuits with a single majority-gate at the output node, MOD/sub m/-gates at the middle level, and constant-fanin AND-gates at the input level) that compute parity: (i) MAJoMOD/sub m/oAND/sub 2/ circuits that compute parity must have top fanin 2((log n)/sup /spl Omega/(1)/). (ii) Parity cannot be computed by MAJoMODmoAND/sub O(1)/ circuits with top fanin O(1). Similar results hold for the MOD/sub q/ function as well.","PeriodicalId":240268,"journal":{"name":"Proceedings 16th Annual IEEE Conference on Computational Complexity","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Lower bounds for approximations by low degree polynomials over Z/sub m/\",\"authors\":\"N. Alon, R. Beigel\",\"doi\":\"10.1109/CCC.2001.933885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use a Ramsey-theoretic argument to obtain the first lower bounds for approximations over Z/sub m/ by nonlinear polynomials: (i) A degree-2 polynomial over Z/sub m/ (m odd) must differ from the parity function on at least a 1/2-1/2((log n)/sup /spl Omega/(1)/) fraction of all points in the Boolean n-cube. A degree-O(1) polynomial over Z/sub m/ (m odd) must differ from the parity function on at least a 1/2-o(1) fraction of all points in the Boolean n-cube. These nonapproximability results imply the first known lower bounds on the top fanin of MAJoMOD/sub m/oAND/sub O(1)/ circuits (i.e., circuits with a single majority-gate at the output node, MOD/sub m/-gates at the middle level, and constant-fanin AND-gates at the input level) that compute parity: (i) MAJoMOD/sub m/oAND/sub 2/ circuits that compute parity must have top fanin 2((log n)/sup /spl Omega/(1)/). (ii) Parity cannot be computed by MAJoMODmoAND/sub O(1)/ circuits with top fanin O(1). Similar results hold for the MOD/sub q/ function as well.\",\"PeriodicalId\":240268,\"journal\":{\"name\":\"Proceedings 16th Annual IEEE Conference on Computational Complexity\",\"volume\":\"155 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 16th Annual IEEE Conference on Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.2001.933885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 16th Annual IEEE Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2001.933885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

我们使用ramsey理论论证来获得非线性多项式在Z/sub m/上近似的第一下界:(i)在Z/sub m/ (m奇数)上的2次多项式必须与奇偶函数至少在布尔n立方中所有点的1/2-1/2((log n)/sup /spl Omega/(1)/)分数上不同。在Z/下标m/ (m奇数)上的o(1)次多项式必须在布尔n立方中所有点的至少1/2-o(1)个分数上与奇偶校验函数不同。这些非近似性结果意味着计算奇偶性的MAJoMOD/sub m/oAND/sub O(1)/电路(即输出节点具有单个多数门,中间电平具有MOD/sub m/-门,输入电平具有恒定fanin and门的电路)的顶部fanin的第一个已知下界:(i)计算奇偶性的MAJoMOD/sub m/oAND/sub 2/电路必须具有顶部fanin 2((log n)/sup /spl Omega/(1)/)。(ii)通过MAJoMODmoAND/sub O(1)/ top fanin O(1)电路无法计算奇偶校验。类似的结果也适用于MOD/ subq /函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower bounds for approximations by low degree polynomials over Z/sub m/
We use a Ramsey-theoretic argument to obtain the first lower bounds for approximations over Z/sub m/ by nonlinear polynomials: (i) A degree-2 polynomial over Z/sub m/ (m odd) must differ from the parity function on at least a 1/2-1/2((log n)/sup /spl Omega/(1)/) fraction of all points in the Boolean n-cube. A degree-O(1) polynomial over Z/sub m/ (m odd) must differ from the parity function on at least a 1/2-o(1) fraction of all points in the Boolean n-cube. These nonapproximability results imply the first known lower bounds on the top fanin of MAJoMOD/sub m/oAND/sub O(1)/ circuits (i.e., circuits with a single majority-gate at the output node, MOD/sub m/-gates at the middle level, and constant-fanin AND-gates at the input level) that compute parity: (i) MAJoMOD/sub m/oAND/sub 2/ circuits that compute parity must have top fanin 2((log n)/sup /spl Omega/(1)/). (ii) Parity cannot be computed by MAJoMODmoAND/sub O(1)/ circuits with top fanin O(1). Similar results hold for the MOD/sub q/ function as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信