奇异叶化的Baum-Connes猜想

Iakovos Androulidakis, G. Skandalis
{"title":"奇异叶化的Baum-Connes猜想","authors":"Iakovos Androulidakis, G. Skandalis","doi":"10.2140/akt.2019.4.561","DOIUrl":null,"url":null,"abstract":"We consider singular foliations whose holonomy groupoid may be nicely decomposed using Lie groupoids (of unequal dimension). We show that the Baum-Connes conjecture can be formulated in this setting. This conjecture is shown to hold under assumptions of amenability. We examine several examples that can be described in this way and make explicit computations of their K-theory.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Baum–Connes conjecture for singular\\nfoliations\",\"authors\":\"Iakovos Androulidakis, G. Skandalis\",\"doi\":\"10.2140/akt.2019.4.561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider singular foliations whose holonomy groupoid may be nicely decomposed using Lie groupoids (of unequal dimension). We show that the Baum-Connes conjecture can be formulated in this setting. This conjecture is shown to hold under assumptions of amenability. We examine several examples that can be described in this way and make explicit computations of their K-theory.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2019.4.561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2019.4.561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

考虑奇异叶,其完整群似可以用不等维李群似很好地分解。我们证明了Baum-Connes猜想可以在这种情况下公式化。这一猜想在顺从的假设下是成立的。我们研究了几个可以用这种方式描述的例子,并对它们的k理论进行了显式计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Baum–Connes conjecture for singular foliations
We consider singular foliations whose holonomy groupoid may be nicely decomposed using Lie groupoids (of unequal dimension). We show that the Baum-Connes conjecture can be formulated in this setting. This conjecture is shown to hold under assumptions of amenability. We examine several examples that can be described in this way and make explicit computations of their K-theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信