{"title":"使用重叠SCL处理的低延迟极性解码器","authors":"D. Kam, B. Y. Kong, Youngjoo Lee","doi":"10.1109/ICASSP39728.2021.9414326","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel scheduling method that reduces the latency of polar decoders significantly. Unlike the prior pruning-based successive cancellation list (SCL) decoding that suffers from a number of idle cycles, the proposed overlapped SCL scheme immediately begins node operations without waiting for the list to be sorted, being exempt from such unfavorable cycles. All possible candidates for the next node operations are precomputed in parallel with the pruning operations, and are readily selected to minimize the latency. For the 5G New Radio systems, the proposed method shortens the decoding latency of the state-of-the-art approaches by up to 22% without degrading the error-correcting performance.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Low-Latency Polar Decoder Using Overlapped SCL Processing\",\"authors\":\"D. Kam, B. Y. Kong, Youngjoo Lee\",\"doi\":\"10.1109/ICASSP39728.2021.9414326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel scheduling method that reduces the latency of polar decoders significantly. Unlike the prior pruning-based successive cancellation list (SCL) decoding that suffers from a number of idle cycles, the proposed overlapped SCL scheme immediately begins node operations without waiting for the list to be sorted, being exempt from such unfavorable cycles. All possible candidates for the next node operations are precomputed in parallel with the pruning operations, and are readily selected to minimize the latency. For the 5G New Radio systems, the proposed method shortens the decoding latency of the state-of-the-art approaches by up to 22% without degrading the error-correcting performance.\",\"PeriodicalId\":347060,\"journal\":{\"name\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP39728.2021.9414326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9414326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-Latency Polar Decoder Using Overlapped SCL Processing
In this paper, we present a novel scheduling method that reduces the latency of polar decoders significantly. Unlike the prior pruning-based successive cancellation list (SCL) decoding that suffers from a number of idle cycles, the proposed overlapped SCL scheme immediately begins node operations without waiting for the list to be sorted, being exempt from such unfavorable cycles. All possible candidates for the next node operations are precomputed in parallel with the pruning operations, and are readily selected to minimize the latency. For the 5G New Radio systems, the proposed method shortens the decoding latency of the state-of-the-art approaches by up to 22% without degrading the error-correcting performance.