{"title":"微机械硅的最新发展","authors":"D. Moore, R. Syms","doi":"10.1049/ECEJ:19990603","DOIUrl":null,"url":null,"abstract":"This paper provides a review, directed at scientists and engineers concerned with microsystems technology, of advances in microelectromechanical systems (MEMS). The emphasis is on silicon technology, where the electrical properties of the material are exploited in circuitry and the mechanical properties are used in sensor and microstructure applications. Developments in surface micromachining are discussed, and applications in sensors, microelectronic devices, vacuum microanalysis systems, microfluidics, and optoelectronic subsystems are reviewed. Some emerging technologies are assessed and promising new research directions are identified.","PeriodicalId":127784,"journal":{"name":"Electronics & Communication Engineering Journal","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Recent developments in micromachined silicon\",\"authors\":\"D. Moore, R. Syms\",\"doi\":\"10.1049/ECEJ:19990603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a review, directed at scientists and engineers concerned with microsystems technology, of advances in microelectromechanical systems (MEMS). The emphasis is on silicon technology, where the electrical properties of the material are exploited in circuitry and the mechanical properties are used in sensor and microstructure applications. Developments in surface micromachining are discussed, and applications in sensors, microelectronic devices, vacuum microanalysis systems, microfluidics, and optoelectronic subsystems are reviewed. Some emerging technologies are assessed and promising new research directions are identified.\",\"PeriodicalId\":127784,\"journal\":{\"name\":\"Electronics & Communication Engineering Journal\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics & Communication Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/ECEJ:19990603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics & Communication Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ECEJ:19990603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper provides a review, directed at scientists and engineers concerned with microsystems technology, of advances in microelectromechanical systems (MEMS). The emphasis is on silicon technology, where the electrical properties of the material are exploited in circuitry and the mechanical properties are used in sensor and microstructure applications. Developments in surface micromachining are discussed, and applications in sensors, microelectronic devices, vacuum microanalysis systems, microfluidics, and optoelectronic subsystems are reviewed. Some emerging technologies are assessed and promising new research directions are identified.