解析积分中带勒让德权函数的高斯正交公式的误差界

D. Jandrlic, D. Krtinic, Ljubica Mihić, A. Pejcev, M. Spalević
{"title":"解析积分中带勒让德权函数的高斯正交公式的误差界","authors":"D. Jandrlic, D. Krtinic, Ljubica Mihić, A. Pejcev, M. Spalević","doi":"10.1553/etna_vol55s424","DOIUrl":null,"url":null,"abstract":". In this paper we are concerned with a method for the numerical evaluation of the error terms in Gaussian quadrature formulae with the Legendre weight function. Inspired by the work of H. Wang and L. Zhang [J. Sci. Comput., 75 (2018), pp. 457–477] and applying the results of S. Notaris [Math. Comp., 75 (2006), pp. 1217– 1231], we determine an explicit formula for the kernel. This explicit expression is used for finding the points on ellipses where the maximum of the modulus of the kernel is attained. Effective error bounds for this quadrature formula for analytic integrands are derived.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Error bounds for Gaussian quadrature formulae with Legendre weight function for analytic integrands\",\"authors\":\"D. Jandrlic, D. Krtinic, Ljubica Mihić, A. Pejcev, M. Spalević\",\"doi\":\"10.1553/etna_vol55s424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper we are concerned with a method for the numerical evaluation of the error terms in Gaussian quadrature formulae with the Legendre weight function. Inspired by the work of H. Wang and L. Zhang [J. Sci. Comput., 75 (2018), pp. 457–477] and applying the results of S. Notaris [Math. Comp., 75 (2006), pp. 1217– 1231], we determine an explicit formula for the kernel. This explicit expression is used for finding the points on ellipses where the maximum of the modulus of the kernel is attained. Effective error bounds for this quadrature formula for analytic integrands are derived.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol55s424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol55s424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

. 本文讨论了用勒让德权函数对高斯正交公式中的误差项进行数值计算的方法。受王辉和张磊工作的启发[J]。科学。第一版。[j] .北京大学学报(自然科学版),75 (2018),pp. 457-477]。Comp., 75 (2006), pp. 1217 - 1231],我们确定了内核的显式公式。这个显式表达式用于寻找椭圆上的点,在那里核的模量达到最大值。导出了解析积分求积公式的有效误差界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error bounds for Gaussian quadrature formulae with Legendre weight function for analytic integrands
. In this paper we are concerned with a method for the numerical evaluation of the error terms in Gaussian quadrature formulae with the Legendre weight function. Inspired by the work of H. Wang and L. Zhang [J. Sci. Comput., 75 (2018), pp. 457–477] and applying the results of S. Notaris [Math. Comp., 75 (2006), pp. 1217– 1231], we determine an explicit formula for the kernel. This explicit expression is used for finding the points on ellipses where the maximum of the modulus of the kernel is attained. Effective error bounds for this quadrature formula for analytic integrands are derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信