基于多体动力学分析的上肢康复机器人原型设计与研制

H. Sung, C. Hsiao, C. Lee, Chin-Yu Wang
{"title":"基于多体动力学分析的上肢康复机器人原型设计与研制","authors":"H. Sung, C. Hsiao, C. Lee, Chin-Yu Wang","doi":"10.1109/ICARA56516.2023.10125669","DOIUrl":null,"url":null,"abstract":"The nerve plexus damage of the upper limb provokes the disability of patients and makes a drastic impact both mentally and physically. Therefore, rehabilitation treatments for patients are indispensable. This study focuses on developing a 3-axis rehabilitation robot with targets including the geometric design of body structure, mathematical modeling of the multi-axis mechanism, the multi-body dynamic analysis, the selection of mechatronic systems, and the assembling and solid test of the rehabilitation robot. Through the precedent design, analysis, and simulation using software, the specification and performance can be ensured in advance. The realized rehabilitation robot is quickly developed with a further professional evaluation of the rehabilitating movements. Thus, the most suitable rehabilitating movement for patients can be achieved to enhance the effectiveness of the rehabilitation treatment.","PeriodicalId":443572,"journal":{"name":"2023 9th International Conference on Automation, Robotics and Applications (ICARA)","volume":"249 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Development of a Prototype Upper-limb Rehabilitation Robot Based on Multi-body Dynamics Analysis\",\"authors\":\"H. Sung, C. Hsiao, C. Lee, Chin-Yu Wang\",\"doi\":\"10.1109/ICARA56516.2023.10125669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nerve plexus damage of the upper limb provokes the disability of patients and makes a drastic impact both mentally and physically. Therefore, rehabilitation treatments for patients are indispensable. This study focuses on developing a 3-axis rehabilitation robot with targets including the geometric design of body structure, mathematical modeling of the multi-axis mechanism, the multi-body dynamic analysis, the selection of mechatronic systems, and the assembling and solid test of the rehabilitation robot. Through the precedent design, analysis, and simulation using software, the specification and performance can be ensured in advance. The realized rehabilitation robot is quickly developed with a further professional evaluation of the rehabilitating movements. Thus, the most suitable rehabilitating movement for patients can be achieved to enhance the effectiveness of the rehabilitation treatment.\",\"PeriodicalId\":443572,\"journal\":{\"name\":\"2023 9th International Conference on Automation, Robotics and Applications (ICARA)\",\"volume\":\"249 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 9th International Conference on Automation, Robotics and Applications (ICARA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARA56516.2023.10125669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA56516.2023.10125669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

上肢神经丛损伤会引起患者的残疾,并对患者的精神和身体造成严重的影响。因此,对患者进行康复治疗必不可少。本研究主要针对三轴康复机器人的研制,包括身体结构的几何设计、多轴机构的数学建模、多体动力学分析、机电系统的选择以及康复机器人的装配和实体试验。通过前期的设计、分析和软件仿真,可以提前保证系统的规格和性能。实现的康复机器人发展迅速,对康复动作进行了进一步的专业评估。从而达到最适合患者的康复运动,提高康复治疗的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Development of a Prototype Upper-limb Rehabilitation Robot Based on Multi-body Dynamics Analysis
The nerve plexus damage of the upper limb provokes the disability of patients and makes a drastic impact both mentally and physically. Therefore, rehabilitation treatments for patients are indispensable. This study focuses on developing a 3-axis rehabilitation robot with targets including the geometric design of body structure, mathematical modeling of the multi-axis mechanism, the multi-body dynamic analysis, the selection of mechatronic systems, and the assembling and solid test of the rehabilitation robot. Through the precedent design, analysis, and simulation using software, the specification and performance can be ensured in advance. The realized rehabilitation robot is quickly developed with a further professional evaluation of the rehabilitating movements. Thus, the most suitable rehabilitating movement for patients can be achieved to enhance the effectiveness of the rehabilitation treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信