基于进化方案的kNN方法中组件选择的免疫算法

A. Pawlovsky
{"title":"基于进化方案的kNN方法中组件选择的免疫算法","authors":"A. Pawlovsky","doi":"10.1109/CEC.2018.8477671","DOIUrl":null,"url":null,"abstract":"We introduce an immune algorithm (IA) that for the generation of a cell for a new (immune candidate) cell group uses an evolutionary scheme that makes the cell inherit receptors from more than two other cells. This IA is used to find combinations of features (components) that could improve the accuracy of a kNN (k Nearest Neighbor) when it is used for diagnosis or prognosis. We evaluated our approach with five medical data sets and found that it effectively helps to improve the accuracy of kNN in more than 2%.","PeriodicalId":212677,"journal":{"name":"2018 IEEE Congress on Evolutionary Computation (CEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Immune Algorithm with an Evolutionary Scheme for Component Selection for the kNN Method\",\"authors\":\"A. Pawlovsky\",\"doi\":\"10.1109/CEC.2018.8477671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce an immune algorithm (IA) that for the generation of a cell for a new (immune candidate) cell group uses an evolutionary scheme that makes the cell inherit receptors from more than two other cells. This IA is used to find combinations of features (components) that could improve the accuracy of a kNN (k Nearest Neighbor) when it is used for diagnosis or prognosis. We evaluated our approach with five medical data sets and found that it effectively helps to improve the accuracy of kNN in more than 2%.\",\"PeriodicalId\":212677,\"journal\":{\"name\":\"2018 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2018.8477671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2018.8477671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一种免疫算法(IA),该算法使用一种进化方案,使细胞从两个以上的其他细胞中继承受体,用于新(免疫候选)细胞群的细胞生成。当kNN (k最近邻)用于诊断或预后时,该IA用于寻找可以提高其准确性的特征(组件)组合。我们用5个医疗数据集评估了我们的方法,发现它有效地帮助将kNN的准确性提高了2%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Immune Algorithm with an Evolutionary Scheme for Component Selection for the kNN Method
We introduce an immune algorithm (IA) that for the generation of a cell for a new (immune candidate) cell group uses an evolutionary scheme that makes the cell inherit receptors from more than two other cells. This IA is used to find combinations of features (components) that could improve the accuracy of a kNN (k Nearest Neighbor) when it is used for diagnosis or prognosis. We evaluated our approach with five medical data sets and found that it effectively helps to improve the accuracy of kNN in more than 2%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信