使用深度卷积神经网络预测游戏地图中的资源位置

Scott Lee, Aaron Isaksen, Christoffer Holmgård, J. Togelius
{"title":"使用深度卷积神经网络预测游戏地图中的资源位置","authors":"Scott Lee, Aaron Isaksen, Christoffer Holmgård, J. Togelius","doi":"10.1609/aiide.v12i2.12893","DOIUrl":null,"url":null,"abstract":"\n \n We describe an application of neural networks to predict the placements of resources in StarCraft II maps. Networks are trained on existing maps taken from databases of maps actively used in online competitions and tested on unseen maps with resources (minerals and vespene gas) removed. This method is potentially useful for AI-assisted game design tools, allowing the suggestion of resource and base placements consonant with implicit StarCraft II design principles for fully or partially sketched heightmaps. By varying the thresholds for the placement of resources, more or fewer resources can be created consistently with the pattern of a single map. We further propose that these networks can be used to help understand the design principles of StarCraft II maps, and by extension other, similar types of game content.\n \n","PeriodicalId":249108,"journal":{"name":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Predicting Resource Locations in Game Maps Using Deep Convolutional Neural Networks\",\"authors\":\"Scott Lee, Aaron Isaksen, Christoffer Holmgård, J. Togelius\",\"doi\":\"10.1609/aiide.v12i2.12893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n We describe an application of neural networks to predict the placements of resources in StarCraft II maps. Networks are trained on existing maps taken from databases of maps actively used in online competitions and tested on unseen maps with resources (minerals and vespene gas) removed. This method is potentially useful for AI-assisted game design tools, allowing the suggestion of resource and base placements consonant with implicit StarCraft II design principles for fully or partially sketched heightmaps. By varying the thresholds for the placement of resources, more or fewer resources can be created consistently with the pattern of a single map. We further propose that these networks can be used to help understand the design principles of StarCraft II maps, and by extension other, similar types of game content.\\n \\n\",\"PeriodicalId\":249108,\"journal\":{\"name\":\"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aiide.v12i2.12893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aiide.v12i2.12893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们描述了一个应用神经网络来预测《星际争霸2》地图中资源的位置。网络在从在线竞赛中积极使用的地图数据库中提取的现有地图上进行训练,并在删除资源(矿物和瓦斯)的未见地图上进行测试。这种方法对于ai辅助的游戏设计工具非常有用,可以根据《星际争霸2》的设计原则,建议资源和基地的位置,以便绘制出完整或部分的高度地图。通过改变资源放置的阈值,可以根据单个映射的模式一致地创建更多或更少的资源。我们进一步提出,这些网络可以用来帮助理解《星际争霸2》地图的设计原则,并扩展到其他类似类型的游戏内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Resource Locations in Game Maps Using Deep Convolutional Neural Networks
We describe an application of neural networks to predict the placements of resources in StarCraft II maps. Networks are trained on existing maps taken from databases of maps actively used in online competitions and tested on unseen maps with resources (minerals and vespene gas) removed. This method is potentially useful for AI-assisted game design tools, allowing the suggestion of resource and base placements consonant with implicit StarCraft II design principles for fully or partially sketched heightmaps. By varying the thresholds for the placement of resources, more or fewer resources can be created consistently with the pattern of a single map. We further propose that these networks can be used to help understand the design principles of StarCraft II maps, and by extension other, similar types of game content.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信