三种统计方法的组合用于高光谱图像的目视异常检测

M. Alonso, J. Malpica
{"title":"三种统计方法的组合用于高光谱图像的目视异常检测","authors":"M. Alonso, J. Malpica","doi":"10.1109/ICAPR.2009.78","DOIUrl":null,"url":null,"abstract":"Outliers are important features that are of special interest to image analysts in their work. The objective of this paper is to show how several statistical techniques with different theoretical foundations can be successfully applied complementarily to detect anomalies in hyperspectral imageries. The methodology is shown in airborne hyperspectral imagery with 60 bands. The visual inspection of the last components of Principal Component Analysis (PCA), together with the analysis of the images provided by the Reed and Xiaoli Yu algorithm and projection pursuit algorithm, allows clear extraction of most of the anomalies, such as synthetic material of tennis court floors or metallic roofs of buildings. A discussion and comparison of the three methods is given.","PeriodicalId":443926,"journal":{"name":"2009 Seventh International Conference on Advances in Pattern Recognition","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The Combination of Three Statistical Methods for Visual Inspection of Anomalies in Hyperspectral Imageries\",\"authors\":\"M. Alonso, J. Malpica\",\"doi\":\"10.1109/ICAPR.2009.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outliers are important features that are of special interest to image analysts in their work. The objective of this paper is to show how several statistical techniques with different theoretical foundations can be successfully applied complementarily to detect anomalies in hyperspectral imageries. The methodology is shown in airborne hyperspectral imagery with 60 bands. The visual inspection of the last components of Principal Component Analysis (PCA), together with the analysis of the images provided by the Reed and Xiaoli Yu algorithm and projection pursuit algorithm, allows clear extraction of most of the anomalies, such as synthetic material of tennis court floors or metallic roofs of buildings. A discussion and comparison of the three methods is given.\",\"PeriodicalId\":443926,\"journal\":{\"name\":\"2009 Seventh International Conference on Advances in Pattern Recognition\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Seventh International Conference on Advances in Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAPR.2009.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Conference on Advances in Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPR.2009.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

异常值是图像分析人员在工作中特别感兴趣的重要特征。本文的目的是展示几种具有不同理论基础的统计技术如何成功地互补应用于高光谱图像中的异常检测。该方法在60个波段的航空高光谱图像中得到了验证。通过对主成分分析(PCA)最后一个分量的目视检查,以及Reed和Xiaoli Yu算法和投影追踪算法提供的图像的分析,可以清晰地提取出大部分异常,例如网球场地板的合成材料或建筑物的金属屋顶。对这三种方法进行了讨论和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Combination of Three Statistical Methods for Visual Inspection of Anomalies in Hyperspectral Imageries
Outliers are important features that are of special interest to image analysts in their work. The objective of this paper is to show how several statistical techniques with different theoretical foundations can be successfully applied complementarily to detect anomalies in hyperspectral imageries. The methodology is shown in airborne hyperspectral imagery with 60 bands. The visual inspection of the last components of Principal Component Analysis (PCA), together with the analysis of the images provided by the Reed and Xiaoli Yu algorithm and projection pursuit algorithm, allows clear extraction of most of the anomalies, such as synthetic material of tennis court floors or metallic roofs of buildings. A discussion and comparison of the three methods is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信