仪器仪表系统开发与评估的结构化方法

A. Waheed, D. Rover
{"title":"仪器仪表系统开发与评估的结构化方法","authors":"A. Waheed, D. Rover","doi":"10.1145/224170.224271","DOIUrl":null,"url":null,"abstract":"Software instrumentation is a widely used technique for parallel program performance evaluation, debugging, steering, and visualization. With increasing sophistication of parallel tool development technologies and broadening of application areas where these tools are being used, runtime data collection and management activities are growing in importance; we use the term instrumentation system (IS) to refer to components that support these activities in state-of-the-art parallel tool environments. An IS consists of Local Instrumentation Servers, an Instrumentation System Manager, and a Transfer Protocol. The overheads and perturbation effects attributed to an IS must be accounted for to ensure correct and efficient representation of program behavior, especially for on-line and real-time environments. Moreover, an IS is a key facilitator of integration of tools in an environment. In this paper, we define the primary components of an IS and their roles in an integrated environment, and classify ISs according to selected features. We introduce a structured approach to plan, design, model, evaluate, implement, and validate an IS. The approach provides a means to formally address domain-specific requirements. The modeling and evaluation processes are illustrated in the context of three distinctive IS case studies for PICL, Paradyn, and Vista. Valuable feedback on performance effects of IS parameters and policies can assist developers in making design decisions early in the software development cycle. Additionally, use of structured software engineering methods can support the mapping of an abstract IS model to an implementation of the IS.","PeriodicalId":269909,"journal":{"name":"Proceedings of the IEEE/ACM SC95 Conference","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"A Structured Approach to Instrumentation System Development and Evaluation\",\"authors\":\"A. Waheed, D. Rover\",\"doi\":\"10.1145/224170.224271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software instrumentation is a widely used technique for parallel program performance evaluation, debugging, steering, and visualization. With increasing sophistication of parallel tool development technologies and broadening of application areas where these tools are being used, runtime data collection and management activities are growing in importance; we use the term instrumentation system (IS) to refer to components that support these activities in state-of-the-art parallel tool environments. An IS consists of Local Instrumentation Servers, an Instrumentation System Manager, and a Transfer Protocol. The overheads and perturbation effects attributed to an IS must be accounted for to ensure correct and efficient representation of program behavior, especially for on-line and real-time environments. Moreover, an IS is a key facilitator of integration of tools in an environment. In this paper, we define the primary components of an IS and their roles in an integrated environment, and classify ISs according to selected features. We introduce a structured approach to plan, design, model, evaluate, implement, and validate an IS. The approach provides a means to formally address domain-specific requirements. The modeling and evaluation processes are illustrated in the context of three distinctive IS case studies for PICL, Paradyn, and Vista. Valuable feedback on performance effects of IS parameters and policies can assist developers in making design decisions early in the software development cycle. Additionally, use of structured software engineering methods can support the mapping of an abstract IS model to an implementation of the IS.\",\"PeriodicalId\":269909,\"journal\":{\"name\":\"Proceedings of the IEEE/ACM SC95 Conference\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE/ACM SC95 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/224170.224271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE/ACM SC95 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/224170.224271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

软件检测是一种广泛用于并行程序性能评估、调试、控制和可视化的技术。随着并行工具开发技术的日益成熟和这些工具的应用领域的扩大,运行时数据收集和管理活动变得越来越重要;我们使用术语仪表系统(IS)来指代在最先进的并行工具环境中支持这些活动的组件。一个IS由本地仪器服务器、仪器系统管理器和传输协议组成。必须考虑到IS的开销和扰动效应,以确保程序行为的正确和有效表示,特别是在线和实时环境。此外,信息系统是环境中工具集成的关键促进者。本文定义了信息系统的主要组成部分及其在集成环境中的作用,并根据所选择的特征对信息系统进行分类。我们介绍了一种结构化的方法来计划、设计、建模、评估、实施和验证一个信息系统。该方法提供了一种正式处理领域特定需求的方法。建模和评估过程在PICL、Paradyn和Vista三个不同的IS案例研究的背景下进行了说明。关于IS参数和策略的性能影响的有价值的反馈可以帮助开发人员在软件开发周期的早期做出设计决策。此外,使用结构化软件工程方法可以支持抽象IS模型到IS实现的映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Structured Approach to Instrumentation System Development and Evaluation
Software instrumentation is a widely used technique for parallel program performance evaluation, debugging, steering, and visualization. With increasing sophistication of parallel tool development technologies and broadening of application areas where these tools are being used, runtime data collection and management activities are growing in importance; we use the term instrumentation system (IS) to refer to components that support these activities in state-of-the-art parallel tool environments. An IS consists of Local Instrumentation Servers, an Instrumentation System Manager, and a Transfer Protocol. The overheads and perturbation effects attributed to an IS must be accounted for to ensure correct and efficient representation of program behavior, especially for on-line and real-time environments. Moreover, an IS is a key facilitator of integration of tools in an environment. In this paper, we define the primary components of an IS and their roles in an integrated environment, and classify ISs according to selected features. We introduce a structured approach to plan, design, model, evaluate, implement, and validate an IS. The approach provides a means to formally address domain-specific requirements. The modeling and evaluation processes are illustrated in the context of three distinctive IS case studies for PICL, Paradyn, and Vista. Valuable feedback on performance effects of IS parameters and policies can assist developers in making design decisions early in the software development cycle. Additionally, use of structured software engineering methods can support the mapping of an abstract IS model to an implementation of the IS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信