朝着自动优化PySke程序

Jolan Philippe, F. Loulergue
{"title":"朝着自动优化PySke程序","authors":"Jolan Philippe, F. Loulergue","doi":"10.1109/HPCS48598.2019.9188160","DOIUrl":null,"url":null,"abstract":"Explicit parallel programming for shared and distributed memory architectures is an efficient way to deal with data intensive computations. However approaches such as explicit threads or MPI remain difficult solutions for most programmers. Indeed they have to face different constraints such as explicit inter-processors communications or data distribution.","PeriodicalId":371856,"journal":{"name":"2019 International Conference on High Performance Computing & Simulation (HPCS)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Automatically Optimizing PySke Programs\",\"authors\":\"Jolan Philippe, F. Loulergue\",\"doi\":\"10.1109/HPCS48598.2019.9188160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Explicit parallel programming for shared and distributed memory architectures is an efficient way to deal with data intensive computations. However approaches such as explicit threads or MPI remain difficult solutions for most programmers. Indeed they have to face different constraints such as explicit inter-processors communications or data distribution.\",\"PeriodicalId\":371856,\"journal\":{\"name\":\"2019 International Conference on High Performance Computing & Simulation (HPCS)\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on High Performance Computing & Simulation (HPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCS48598.2019.9188160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCS48598.2019.9188160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对共享和分布式内存架构的显式并行编程是处理数据密集型计算的有效方法。然而,对于大多数程序员来说,显式线程或MPI等方法仍然是困难的解决方案。实际上,它们必须面对不同的约束,例如显式的处理器间通信或数据分发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Automatically Optimizing PySke Programs
Explicit parallel programming for shared and distributed memory architectures is an efficient way to deal with data intensive computations. However approaches such as explicit threads or MPI remain difficult solutions for most programmers. Indeed they have to face different constraints such as explicit inter-processors communications or data distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信