三旋转参数多体系统的显式时间积分

S. Holzinger, J. Gerstmayr
{"title":"三旋转参数多体系统的显式时间积分","authors":"S. Holzinger, J. Gerstmayr","doi":"10.1115/detc2020-22261","DOIUrl":null,"url":null,"abstract":"\n Rigid bodies are an essential part of multibody systems. As there are six degrees of freedom in rigid bodies, it is natural but also precarious to use three parameters for the displacement and three parameters for the rotation parameters — since there is no singularity-free description of spatial rotations based on three rotation parameters. Standard formulations based on three rotation parameters avoid singularities, e.g. by applying reparameterization strategies during the time integration of the rotational kinematic equations. Alternatively, Euler parameters are commonly used to avoid singularities. State of the art approaches use Lie group methods, specifically integrators, to model rigid body motion without the need for the above mentioned solutions. However, the methods so far have been based on additional information, e.g., the rotation matrix, which has to been computed in each step. The latter procedure is thus difficult to be implemented in existing codes that are based on three rotation parameters. In this paper, we use the rotation vector to model large rotations. Whereby Lie group integration methods are used to compute consistent updates for the rotation vector in every time step. The resulting rotation vector update is finite, while the derivative of the rotation vector in the singularity becomes unbounded. The advantages of this method are shown in an example of a gyro. Additionally, the method is applied to a multibody system and the effects of crossing singularities are presented.","PeriodicalId":236538,"journal":{"name":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicit Time Integration of Multibody Systems Modelled With Three Rotation Parameters\",\"authors\":\"S. Holzinger, J. Gerstmayr\",\"doi\":\"10.1115/detc2020-22261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Rigid bodies are an essential part of multibody systems. As there are six degrees of freedom in rigid bodies, it is natural but also precarious to use three parameters for the displacement and three parameters for the rotation parameters — since there is no singularity-free description of spatial rotations based on three rotation parameters. Standard formulations based on three rotation parameters avoid singularities, e.g. by applying reparameterization strategies during the time integration of the rotational kinematic equations. Alternatively, Euler parameters are commonly used to avoid singularities. State of the art approaches use Lie group methods, specifically integrators, to model rigid body motion without the need for the above mentioned solutions. However, the methods so far have been based on additional information, e.g., the rotation matrix, which has to been computed in each step. The latter procedure is thus difficult to be implemented in existing codes that are based on three rotation parameters. In this paper, we use the rotation vector to model large rotations. Whereby Lie group integration methods are used to compute consistent updates for the rotation vector in every time step. The resulting rotation vector update is finite, while the derivative of the rotation vector in the singularity becomes unbounded. The advantages of this method are shown in an example of a gyro. Additionally, the method is applied to a multibody system and the effects of crossing singularities are presented.\",\"PeriodicalId\":236538,\"journal\":{\"name\":\"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

刚体是多体系统的重要组成部分。由于刚体有6个自由度,用3个参数表示位移和3个参数表示旋转是自然的,但也是不安全的,因为没有基于3个旋转参数的空间旋转无奇点描述。基于三个旋转参数的标准公式避免了奇异性,例如通过在旋转运动学方程的时间积分期间应用重参数化策略。另外,欧拉参数通常用于避免奇异性。最先进的方法使用李群方法,特别是积分器,来模拟刚体运动,而不需要上述解决方案。然而,到目前为止,这些方法都是基于附加信息,例如,必须在每一步中计算的旋转矩阵。因此,后一种程序难以在基于三个旋转参数的现有代码中执行。在本文中,我们使用旋转向量来模拟大的旋转。其中,利用李群积分法计算旋转矢量在每个时间步长的一致更新。所得到的旋转矢量更新是有限的,而旋转矢量在奇点处的导数变为无界。以陀螺为例说明了这种方法的优点。此外,将该方法应用于多体系统,并给出了交叉奇异点的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explicit Time Integration of Multibody Systems Modelled With Three Rotation Parameters
Rigid bodies are an essential part of multibody systems. As there are six degrees of freedom in rigid bodies, it is natural but also precarious to use three parameters for the displacement and three parameters for the rotation parameters — since there is no singularity-free description of spatial rotations based on three rotation parameters. Standard formulations based on three rotation parameters avoid singularities, e.g. by applying reparameterization strategies during the time integration of the rotational kinematic equations. Alternatively, Euler parameters are commonly used to avoid singularities. State of the art approaches use Lie group methods, specifically integrators, to model rigid body motion without the need for the above mentioned solutions. However, the methods so far have been based on additional information, e.g., the rotation matrix, which has to been computed in each step. The latter procedure is thus difficult to be implemented in existing codes that are based on three rotation parameters. In this paper, we use the rotation vector to model large rotations. Whereby Lie group integration methods are used to compute consistent updates for the rotation vector in every time step. The resulting rotation vector update is finite, while the derivative of the rotation vector in the singularity becomes unbounded. The advantages of this method are shown in an example of a gyro. Additionally, the method is applied to a multibody system and the effects of crossing singularities are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信