一种新的二次交叉粒子群优化算法

M. Pant, R. Thangaraj
{"title":"一种新的二次交叉粒子群优化算法","authors":"M. Pant, R. Thangaraj","doi":"10.1109/ADCOM.2007.22","DOIUrl":null,"url":null,"abstract":"In this paper we have presented a new variant of diversity guided PSO algorithm named QIPSO for solving global optimization problems. The QIPSO algorithm makes use of a quadratic crossover operator to maintain the level of diversity in the swarm population, thereby maintaining a good balance between the exploration and exploitation phenomena and preventing premature convergence. We have compared it with Basic Particle Swarm Optimization (BPSO) and another diversity guided PSO called ARPSO. The numerical results show that QIPSO outperforms the other two algorithms in all the seventeen cases taken in this study.","PeriodicalId":185608,"journal":{"name":"15th International Conference on Advanced Computing and Communications (ADCOM 2007)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A New Particle Swarm Optimization with Quadratic Crossover\",\"authors\":\"M. Pant, R. Thangaraj\",\"doi\":\"10.1109/ADCOM.2007.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we have presented a new variant of diversity guided PSO algorithm named QIPSO for solving global optimization problems. The QIPSO algorithm makes use of a quadratic crossover operator to maintain the level of diversity in the swarm population, thereby maintaining a good balance between the exploration and exploitation phenomena and preventing premature convergence. We have compared it with Basic Particle Swarm Optimization (BPSO) and another diversity guided PSO called ARPSO. The numerical results show that QIPSO outperforms the other two algorithms in all the seventeen cases taken in this study.\",\"PeriodicalId\":185608,\"journal\":{\"name\":\"15th International Conference on Advanced Computing and Communications (ADCOM 2007)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"15th International Conference on Advanced Computing and Communications (ADCOM 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ADCOM.2007.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th International Conference on Advanced Computing and Communications (ADCOM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ADCOM.2007.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种新的基于分集引导的粒子群优化算法——QIPSO,用于求解全局优化问题。QIPSO算法利用二次交叉算子保持群体种群的多样性水平,从而在探索和开发现象之间保持良好的平衡,防止过早收敛。我们将其与基本粒子群优化(BPSO)和另一种多样性引导粒子群优化(ARPSO)进行了比较。数值结果表明,在本文选取的所有17种情况下,QIPSO算法都优于其他两种算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Particle Swarm Optimization with Quadratic Crossover
In this paper we have presented a new variant of diversity guided PSO algorithm named QIPSO for solving global optimization problems. The QIPSO algorithm makes use of a quadratic crossover operator to maintain the level of diversity in the swarm population, thereby maintaining a good balance between the exploration and exploitation phenomena and preventing premature convergence. We have compared it with Basic Particle Swarm Optimization (BPSO) and another diversity guided PSO called ARPSO. The numerical results show that QIPSO outperforms the other two algorithms in all the seventeen cases taken in this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信