基于lstm的传感器异常检测与分类方法

A. Verner, Sumitra Mukherjee
{"title":"基于lstm的传感器异常检测与分类方法","authors":"A. Verner, Sumitra Mukherjee","doi":"10.1145/3409073.3409089","DOIUrl":null,"url":null,"abstract":"Most existing machine learning (ML) based solutions for anomaly detection in sensory data rely on carefully hand-crafted features. This approach has a fundamental limitation since it is often application-specific and requires considerable human effort from domain experts. Deep learning models have been demonstrated to have the ability to abstract relevant high-level features from raw data. Long short-term memory (LSTM) recurrent neural networks have proven effective in complex time-series prediction problems. In this paper, we propose an LSTM-based method for anomaly detection in sensory data. We systematically investigate its effectiveness on raw time-series of real medical sensors measurements and show that it achieves the same level of performance as traditional ML models operating on carefully designed feature vectors. The proposed method achieved micro, macro, and weighted precision, recall, and F1-score of over 0.99.","PeriodicalId":229746,"journal":{"name":"Proceedings of the 2020 5th International Conference on Machine Learning Technologies","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An LSTM-Based Method for Detection and Classification of Sensor Anomalies\",\"authors\":\"A. Verner, Sumitra Mukherjee\",\"doi\":\"10.1145/3409073.3409089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most existing machine learning (ML) based solutions for anomaly detection in sensory data rely on carefully hand-crafted features. This approach has a fundamental limitation since it is often application-specific and requires considerable human effort from domain experts. Deep learning models have been demonstrated to have the ability to abstract relevant high-level features from raw data. Long short-term memory (LSTM) recurrent neural networks have proven effective in complex time-series prediction problems. In this paper, we propose an LSTM-based method for anomaly detection in sensory data. We systematically investigate its effectiveness on raw time-series of real medical sensors measurements and show that it achieves the same level of performance as traditional ML models operating on carefully designed feature vectors. The proposed method achieved micro, macro, and weighted precision, recall, and F1-score of over 0.99.\",\"PeriodicalId\":229746,\"journal\":{\"name\":\"Proceedings of the 2020 5th International Conference on Machine Learning Technologies\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 5th International Conference on Machine Learning Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3409073.3409089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 5th International Conference on Machine Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3409073.3409089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

大多数现有的基于机器学习(ML)的传感器数据异常检测解决方案都依赖于精心制作的特征。这种方法有一个基本的限制,因为它通常是特定于应用程序的,需要领域专家的大量人力。深度学习模型已被证明具有从原始数据中抽象出相关高级特征的能力。长短期记忆(LSTM)递归神经网络在复杂的时间序列预测问题中已被证明是有效的。本文提出了一种基于lstm的传感器数据异常检测方法。我们系统地研究了它在真实医疗传感器测量的原始时间序列上的有效性,并表明它达到了与在精心设计的特征向量上操作的传统ML模型相同的性能水平。该方法的微观、宏观和加权精度、召回率和f1分数均在0.99以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An LSTM-Based Method for Detection and Classification of Sensor Anomalies
Most existing machine learning (ML) based solutions for anomaly detection in sensory data rely on carefully hand-crafted features. This approach has a fundamental limitation since it is often application-specific and requires considerable human effort from domain experts. Deep learning models have been demonstrated to have the ability to abstract relevant high-level features from raw data. Long short-term memory (LSTM) recurrent neural networks have proven effective in complex time-series prediction problems. In this paper, we propose an LSTM-based method for anomaly detection in sensory data. We systematically investigate its effectiveness on raw time-series of real medical sensors measurements and show that it achieves the same level of performance as traditional ML models operating on carefully designed feature vectors. The proposed method achieved micro, macro, and weighted precision, recall, and F1-score of over 0.99.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信