具有中频基差下界的多曲线cheyette型模型

M. Konikov, A. McClelland
{"title":"具有中频基差下界的多曲线cheyette型模型","authors":"M. Konikov, A. McClelland","doi":"10.2139/ssrn.3524703","DOIUrl":null,"url":null,"abstract":"The modeling of tenor basis spreads is of central importance to CVA for tenor basis swaps. Such spreads are typically positive, suggesting a natural lower bound. We introduce a multi- curve Cheyette-style model with lower bounds enforced through level dependence in spread volatilities. The model is intuitive, easy to implement, and admits approximate swaption pricing formulae under affine specifications. We also discuss the importance of incorporating historical spread data into calibration criteria, and we formalize an according calibration strategy.","PeriodicalId":378972,"journal":{"name":"ERN: Swaps & Forwards (Topic)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-Curve Cheyette-Style Models with Lower Bounds on Tenor Basis Spreads\",\"authors\":\"M. Konikov, A. McClelland\",\"doi\":\"10.2139/ssrn.3524703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The modeling of tenor basis spreads is of central importance to CVA for tenor basis swaps. Such spreads are typically positive, suggesting a natural lower bound. We introduce a multi- curve Cheyette-style model with lower bounds enforced through level dependence in spread volatilities. The model is intuitive, easy to implement, and admits approximate swaption pricing formulae under affine specifications. We also discuss the importance of incorporating historical spread data into calibration criteria, and we formalize an according calibration strategy.\",\"PeriodicalId\":378972,\"journal\":{\"name\":\"ERN: Swaps & Forwards (Topic)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Swaps & Forwards (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3524703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Swaps & Forwards (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3524703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

期次基差的建模对期次基掉期的CVA至关重要。这种利差通常为正,表明存在一个自然的下限。我们引入了一个多曲线cheyette式模型,该模型的下界是通过价差波动的水平依赖来实现的。该模型直观,易于实现,并允许仿射规范下的近似交换定价公式。我们还讨论了将历史扩散数据纳入校准标准的重要性,并形式化了相应的校准策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Curve Cheyette-Style Models with Lower Bounds on Tenor Basis Spreads
The modeling of tenor basis spreads is of central importance to CVA for tenor basis swaps. Such spreads are typically positive, suggesting a natural lower bound. We introduce a multi- curve Cheyette-style model with lower bounds enforced through level dependence in spread volatilities. The model is intuitive, easy to implement, and admits approximate swaption pricing formulae under affine specifications. We also discuss the importance of incorporating historical spread data into calibration criteria, and we formalize an according calibration strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信