{"title":"基于改进Softmax层的自定义卷积神经网络设计用于实时人类情绪识别","authors":"Kai-Yen Wang, Yu-De Huang, Yun-Lung Ho, W. Fang","doi":"10.1109/AICAS.2019.8771616","DOIUrl":null,"url":null,"abstract":"This paper proposes an improved softmax layer algorithm and hardware implementation, which is applicable to an effective convolutional neural network of EEG-based real-time human emotion recognition. Compared with the general softmax layer, this hardware design adds threshold layers to accelerate the training speed and replace the Euler’s base value with a dynamic base value to improve the network accuracy. This work also shows a hardware-friendly way to implement batch normalization layer on chip. Using the EEG emotion DEAP[7] database, the maximum and mean classification accuracy were achieved as 96.03% and 83.88% respectively. In this work, the usage of improved softmax layer can save up to 15% of training model convergence time and also increase by 3 to 5% the average accuracy.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"304 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Customized Convolutional Neural Network Design Using Improved Softmax Layer for Real-time Human Emotion Recognition\",\"authors\":\"Kai-Yen Wang, Yu-De Huang, Yun-Lung Ho, W. Fang\",\"doi\":\"10.1109/AICAS.2019.8771616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an improved softmax layer algorithm and hardware implementation, which is applicable to an effective convolutional neural network of EEG-based real-time human emotion recognition. Compared with the general softmax layer, this hardware design adds threshold layers to accelerate the training speed and replace the Euler’s base value with a dynamic base value to improve the network accuracy. This work also shows a hardware-friendly way to implement batch normalization layer on chip. Using the EEG emotion DEAP[7] database, the maximum and mean classification accuracy were achieved as 96.03% and 83.88% respectively. In this work, the usage of improved softmax layer can save up to 15% of training model convergence time and also increase by 3 to 5% the average accuracy.\",\"PeriodicalId\":273095,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"304 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS.2019.8771616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Customized Convolutional Neural Network Design Using Improved Softmax Layer for Real-time Human Emotion Recognition
This paper proposes an improved softmax layer algorithm and hardware implementation, which is applicable to an effective convolutional neural network of EEG-based real-time human emotion recognition. Compared with the general softmax layer, this hardware design adds threshold layers to accelerate the training speed and replace the Euler’s base value with a dynamic base value to improve the network accuracy. This work also shows a hardware-friendly way to implement batch normalization layer on chip. Using the EEG emotion DEAP[7] database, the maximum and mean classification accuracy were achieved as 96.03% and 83.88% respectively. In this work, the usage of improved softmax layer can save up to 15% of training model convergence time and also increase by 3 to 5% the average accuracy.