从数据流主动学习

Xingquan Zhu, Peng Zhang, Xiaodong Lin, Yong Shi
{"title":"从数据流主动学习","authors":"Xingquan Zhu, Peng Zhang, Xiaodong Lin, Yong Shi","doi":"10.1109/ICDM.2007.101","DOIUrl":null,"url":null,"abstract":"In this paper, we address a new research problem on active learning from data streams where data volumes grow continuously and labeling all data is considered expensive and impractical. The objective is to label a small portion of stream data from which a model is derived to predict newly arrived instances as accurate as possible. In order to tackle the challenges raised by data streams' dynamic nature, we propose a classifier ensembling based active learning framework which selectively labels instances from data streams to build an accurate classifier. A minimal variance principle is introduced to guide instance labeling from data streams. In addition, a weight updating rule is derived to ensure that our instance labeling process can adaptively adjust to dynamic drifting concepts in the data. Experimental results on synthetic and real-world data demonstrate the performances of the proposed efforts in comparison with other simple approaches.","PeriodicalId":233758,"journal":{"name":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"116","resultStr":"{\"title\":\"Active Learning from Data Streams\",\"authors\":\"Xingquan Zhu, Peng Zhang, Xiaodong Lin, Yong Shi\",\"doi\":\"10.1109/ICDM.2007.101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address a new research problem on active learning from data streams where data volumes grow continuously and labeling all data is considered expensive and impractical. The objective is to label a small portion of stream data from which a model is derived to predict newly arrived instances as accurate as possible. In order to tackle the challenges raised by data streams' dynamic nature, we propose a classifier ensembling based active learning framework which selectively labels instances from data streams to build an accurate classifier. A minimal variance principle is introduced to guide instance labeling from data streams. In addition, a weight updating rule is derived to ensure that our instance labeling process can adaptively adjust to dynamic drifting concepts in the data. Experimental results on synthetic and real-world data demonstrate the performances of the proposed efforts in comparison with other simple approaches.\",\"PeriodicalId\":233758,\"journal\":{\"name\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"116\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2007.101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2007.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 116

摘要

在本文中,我们解决了一个新的研究问题,即从数据流中主动学习,其中数据量持续增长,并且标记所有数据被认为是昂贵且不切实际的。目标是标记一小部分流数据,从中导出模型以尽可能准确地预测新到达的实例。为了解决数据流的动态特性带来的挑战,我们提出了一种基于分类器集成的主动学习框架,该框架可以选择性地标记数据流中的实例以构建准确的分类器。引入最小方差原则来指导数据流中的实例标记。此外,还推导了权重更新规则,以确保实例标注过程能够适应数据中概念的动态漂移。在合成数据和实际数据上的实验结果表明,与其他简单方法相比,所提出的方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active Learning from Data Streams
In this paper, we address a new research problem on active learning from data streams where data volumes grow continuously and labeling all data is considered expensive and impractical. The objective is to label a small portion of stream data from which a model is derived to predict newly arrived instances as accurate as possible. In order to tackle the challenges raised by data streams' dynamic nature, we propose a classifier ensembling based active learning framework which selectively labels instances from data streams to build an accurate classifier. A minimal variance principle is introduced to guide instance labeling from data streams. In addition, a weight updating rule is derived to ensure that our instance labeling process can adaptively adjust to dynamic drifting concepts in the data. Experimental results on synthetic and real-world data demonstrate the performances of the proposed efforts in comparison with other simple approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信