一种求序列-并行图最小度生成树的算法

M. A. Haque, R. Uddin, A. Kashem
{"title":"一种求序列-并行图最小度生成树的算法","authors":"M. A. Haque, R. Uddin, A. Kashem","doi":"10.1109/ICICT.2007.375336","DOIUrl":null,"url":null,"abstract":"A minimum degree spanning tree of a graph G is a spanning tree of G whose maximum degree is minimum among all spanning trees of G. The minimum degree spanning tree problem (MDST) is to construct such a spanning tree of a graph. In this paper, we propose a polynomial-time algorithm for solving the MDST problem on series-parallel graphs. Our algorithm runs in linear time for series-parallel graphs with small degrees. By applying this algorithm, we also give an approximation algorithm for solving the minimum edge-ranking spanning tree problem on series-parallel graphs.","PeriodicalId":206443,"journal":{"name":"2007 International Conference on Information and Communication Technology","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Algorithm for Finding Minimum Degree Spanning Tree of Series-Parallel Graphs\",\"authors\":\"M. A. Haque, R. Uddin, A. Kashem\",\"doi\":\"10.1109/ICICT.2007.375336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A minimum degree spanning tree of a graph G is a spanning tree of G whose maximum degree is minimum among all spanning trees of G. The minimum degree spanning tree problem (MDST) is to construct such a spanning tree of a graph. In this paper, we propose a polynomial-time algorithm for solving the MDST problem on series-parallel graphs. Our algorithm runs in linear time for series-parallel graphs with small degrees. By applying this algorithm, we also give an approximation algorithm for solving the minimum edge-ranking spanning tree problem on series-parallel graphs.\",\"PeriodicalId\":206443,\"journal\":{\"name\":\"2007 International Conference on Information and Communication Technology\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Information and Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICT.2007.375336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT.2007.375336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图G的最小度生成树是指在G的所有生成树中最大度最小的G的生成树,最小度生成树问题(minimum degree spanning tree problem, MDST)就是构造这样一棵图的生成树。本文提出了一种求解序列-并行图上的MDST问题的多项式时间算法。我们的算法在线性时间内运行小度序列-并行图。通过应用该算法,我们还给出了一种求解序列并行图上最小边排序生成树问题的近似算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Algorithm for Finding Minimum Degree Spanning Tree of Series-Parallel Graphs
A minimum degree spanning tree of a graph G is a spanning tree of G whose maximum degree is minimum among all spanning trees of G. The minimum degree spanning tree problem (MDST) is to construct such a spanning tree of a graph. In this paper, we propose a polynomial-time algorithm for solving the MDST problem on series-parallel graphs. Our algorithm runs in linear time for series-parallel graphs with small degrees. By applying this algorithm, we also give an approximation algorithm for solving the minimum edge-ranking spanning tree problem on series-parallel graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信