形态学异联想神经网络的应用研究

B. Raducanu, M. Graña
{"title":"形态学异联想神经网络的应用研究","authors":"B. Raducanu, M. Graña","doi":"10.1109/ICIP.2001.959063","DOIUrl":null,"url":null,"abstract":"Morphological neural networks (MNN) have been proposed as an alternative neural computation paradigm. We explore the potential of heteroassociative MNN (HMNN) for a practical task, such as that of robust scene recognition. Scene recognition could be of use for self-localization in a vision-based navigation framework for mobile robots. HMNN have a big potential for real time application because its recall process is very fast. We present some experimental results that illustrate our ideas.","PeriodicalId":291827,"journal":{"name":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On the application of morphological heteroassociative neural networks\",\"authors\":\"B. Raducanu, M. Graña\",\"doi\":\"10.1109/ICIP.2001.959063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Morphological neural networks (MNN) have been proposed as an alternative neural computation paradigm. We explore the potential of heteroassociative MNN (HMNN) for a practical task, such as that of robust scene recognition. Scene recognition could be of use for self-localization in a vision-based navigation framework for mobile robots. HMNN have a big potential for real time application because its recall process is very fast. We present some experimental results that illustrate our ideas.\",\"PeriodicalId\":291827,\"journal\":{\"name\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2001.959063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2001.959063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

形态学神经网络(MNN)已被提出作为一种替代的神经计算范式。我们探索了异关联MNN (HMNN)在实际任务中的潜力,例如鲁棒场景识别。场景识别可用于移动机器人基于视觉的导航框架中的自定位。由于其召回过程非常快,因此在实时应用中具有很大的潜力。我们给出了一些实验结果来说明我们的想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the application of morphological heteroassociative neural networks
Morphological neural networks (MNN) have been proposed as an alternative neural computation paradigm. We explore the potential of heteroassociative MNN (HMNN) for a practical task, such as that of robust scene recognition. Scene recognition could be of use for self-localization in a vision-based navigation framework for mobile robots. HMNN have a big potential for real time application because its recall process is very fast. We present some experimental results that illustrate our ideas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信