仿人机器人iCub的自适应可达性评估

Salomón Ramírez-Contla, D. Marocco
{"title":"仿人机器人iCub的自适应可达性评估","authors":"Salomón Ramírez-Contla, D. Marocco","doi":"10.1109/DEVLRN.2013.6652546","DOIUrl":null,"url":null,"abstract":"We present a model for reachability assessment implemented in a simulated iCub humanoid robot. The robot uses a neural network both for estimating reachability and as a controller for the arm. During training, multi-modality information including vision and proprioception of the effector's length was provided, along with tactile and postural information. The task was to assess if a target in view was at reach range. After training with data from two different effector's lengths, the system generalised also for a third one, both for producing reaching postures and for assessing reachability. We present preliminary results that show good reachability predictions with a decrease in confidence that display a depth gradient.","PeriodicalId":106997,"journal":{"name":"2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive reachability assessment in the humanoid robot iCub\",\"authors\":\"Salomón Ramírez-Contla, D. Marocco\",\"doi\":\"10.1109/DEVLRN.2013.6652546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a model for reachability assessment implemented in a simulated iCub humanoid robot. The robot uses a neural network both for estimating reachability and as a controller for the arm. During training, multi-modality information including vision and proprioception of the effector's length was provided, along with tactile and postural information. The task was to assess if a target in view was at reach range. After training with data from two different effector's lengths, the system generalised also for a third one, both for producing reaching postures and for assessing reachability. We present preliminary results that show good reachability predictions with a decrease in confidence that display a depth gradient.\",\"PeriodicalId\":106997,\"journal\":{\"name\":\"2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEVLRN.2013.6652546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2013.6652546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个模拟iCub人形机器人可达性评估模型。机器人使用神经网络来估计可达性,并作为手臂的控制器。在训练过程中,提供多模态信息,包括视觉和效应器长度的本体感觉,以及触觉和姿势信息。任务是评估目标是否在可及范围内。在用来自两个不同效应器长度的数据进行训练后,该系统也对第三个效应器进行了一般化,包括产生伸展姿势和评估可达性。我们提出了初步结果,显示出良好的可达性预测,但显示深度梯度的置信度降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive reachability assessment in the humanoid robot iCub
We present a model for reachability assessment implemented in a simulated iCub humanoid robot. The robot uses a neural network both for estimating reachability and as a controller for the arm. During training, multi-modality information including vision and proprioception of the effector's length was provided, along with tactile and postural information. The task was to assess if a target in view was at reach range. After training with data from two different effector's lengths, the system generalised also for a third one, both for producing reaching postures and for assessing reachability. We present preliminary results that show good reachability predictions with a decrease in confidence that display a depth gradient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信