多目标粒子滤波检测前跟踪的线性复杂度近似方法

S. Davey, B. Cheung
{"title":"多目标粒子滤波检测前跟踪的线性复杂度近似方法","authors":"S. Davey, B. Cheung","doi":"10.1109/DICTA.2015.7371215","DOIUrl":null,"url":null,"abstract":"The particle filter offers the optimal Bayesian filter for track before detect with a single target. However, direct application to the case of multiple targets can be infeasible because the number of particles required grows exponentially. This paper presents a new method for efficiently implementing track before detect for multiple targets using particles. This method is compared with alternative options on a challenging scenario with up to 20 targets.","PeriodicalId":214897,"journal":{"name":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Linear Complexity Approximate Method for Multi-Target Particle Filter Track before Detect\",\"authors\":\"S. Davey, B. Cheung\",\"doi\":\"10.1109/DICTA.2015.7371215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The particle filter offers the optimal Bayesian filter for track before detect with a single target. However, direct application to the case of multiple targets can be infeasible because the number of particles required grows exponentially. This paper presents a new method for efficiently implementing track before detect for multiple targets using particles. This method is compared with alternative options on a challenging scenario with up to 20 targets.\",\"PeriodicalId\":214897,\"journal\":{\"name\":\"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2015.7371215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2015.7371215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

粒子滤波为单目标检测前跟踪提供了最优贝叶斯滤波。然而,直接应用于多目标的情况可能是不可行的,因为所需的粒子数量呈指数增长。提出了一种利用粒子有效实现多目标先跟踪后检测的新方法。在一个具有多达20个目标的具有挑战性的场景中,将该方法与备选方案进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Linear Complexity Approximate Method for Multi-Target Particle Filter Track before Detect
The particle filter offers the optimal Bayesian filter for track before detect with a single target. However, direct application to the case of multiple targets can be infeasible because the number of particles required grows exponentially. This paper presents a new method for efficiently implementing track before detect for multiple targets using particles. This method is compared with alternative options on a challenging scenario with up to 20 targets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信