基于正交平面分割的四元数傅里叶变换的卷积及相关定理

M. Bahri, R. Ashino
{"title":"基于正交平面分割的四元数傅里叶变换的卷积及相关定理","authors":"M. Bahri, R. Ashino","doi":"10.1109/ICWAPR48189.2019.8946471","DOIUrl":null,"url":null,"abstract":"The quaternion Fourier transformation based on orthogonal planes split is an extension of the two-sided quaternion Fourier transformations using quaternion split. In the present paper we investigate its basic properties such as linearity, frequency-shift and time-frequency shift. We then study the convolution and correlation definitions for the quaternion Fourier transformation based on orthogonal planes split and obtain their convolution and correlation theorems.","PeriodicalId":436840,"journal":{"name":"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolution and Correlation Theorems for Quaternion Fourier Transformation Based on the Orthogonal Planes Split\",\"authors\":\"M. Bahri, R. Ashino\",\"doi\":\"10.1109/ICWAPR48189.2019.8946471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quaternion Fourier transformation based on orthogonal planes split is an extension of the two-sided quaternion Fourier transformations using quaternion split. In the present paper we investigate its basic properties such as linearity, frequency-shift and time-frequency shift. We then study the convolution and correlation definitions for the quaternion Fourier transformation based on orthogonal planes split and obtain their convolution and correlation theorems.\",\"PeriodicalId\":436840,\"journal\":{\"name\":\"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR48189.2019.8946471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR48189.2019.8946471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于正交平面分割的四元数傅里叶变换是对基于四元数分割的双边四元数傅里叶变换的扩展。本文研究了它的基本性质,如线性、频移和时频移。然后研究了基于正交平面分割的四元数傅里叶变换的卷积和相关定义,得到了它们的卷积和相关定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolution and Correlation Theorems for Quaternion Fourier Transformation Based on the Orthogonal Planes Split
The quaternion Fourier transformation based on orthogonal planes split is an extension of the two-sided quaternion Fourier transformations using quaternion split. In the present paper we investigate its basic properties such as linearity, frequency-shift and time-frequency shift. We then study the convolution and correlation definitions for the quaternion Fourier transformation based on orthogonal planes split and obtain their convolution and correlation theorems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信