半离散半线性抛物型问题的后验误差分析

Mohammad Sabawi
{"title":"半离散半线性抛物型问题的后验误差分析","authors":"Mohammad Sabawi","doi":"10.1109/NTCCIT.2018.8681193","DOIUrl":null,"url":null,"abstract":"Optimal order a posteriori error bounds in $L_{\\infty }(L_{2})$ norm are derived for semidiscrete semilinear parabolic problems using various assumptions on the forcing term. Standard continuous Galerkin (conforming) finite element method is employed. Our main tools in deriving these error estimates are the elliptic reconstruction technique, with the aid of Grönwall’s lemma and continuation argument.","PeriodicalId":123568,"journal":{"name":"2018 Al-Mansour International Conference on New Trends in Computing, Communication, and Information Technology (NTCCIT)","volume":"61 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Posteriori Error Analysis for Semidiscrete Semilinear Parabolic Problems\",\"authors\":\"Mohammad Sabawi\",\"doi\":\"10.1109/NTCCIT.2018.8681193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal order a posteriori error bounds in $L_{\\\\infty }(L_{2})$ norm are derived for semidiscrete semilinear parabolic problems using various assumptions on the forcing term. Standard continuous Galerkin (conforming) finite element method is employed. Our main tools in deriving these error estimates are the elliptic reconstruction technique, with the aid of Grönwall’s lemma and continuation argument.\",\"PeriodicalId\":123568,\"journal\":{\"name\":\"2018 Al-Mansour International Conference on New Trends in Computing, Communication, and Information Technology (NTCCIT)\",\"volume\":\"61 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Al-Mansour International Conference on New Trends in Computing, Communication, and Information Technology (NTCCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NTCCIT.2018.8681193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Al-Mansour International Conference on New Trends in Computing, Communication, and Information Technology (NTCCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NTCCIT.2018.8681193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

针对半离散半线性抛物型问题,利用强迫项的各种假设,导出了$L_{\infty }(L_{2})$范数的最优阶后验误差界。采用标准连续伽辽金(一致性)有限元法。我们推导这些误差估计的主要工具是椭圆重建技术,借助Grönwall的引理和延拓论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Posteriori Error Analysis for Semidiscrete Semilinear Parabolic Problems
Optimal order a posteriori error bounds in $L_{\infty }(L_{2})$ norm are derived for semidiscrete semilinear parabolic problems using various assumptions on the forcing term. Standard continuous Galerkin (conforming) finite element method is employed. Our main tools in deriving these error estimates are the elliptic reconstruction technique, with the aid of Grönwall’s lemma and continuation argument.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信