{"title":"半离散半线性抛物型问题的后验误差分析","authors":"Mohammad Sabawi","doi":"10.1109/NTCCIT.2018.8681193","DOIUrl":null,"url":null,"abstract":"Optimal order a posteriori error bounds in $L_{\\infty }(L_{2})$ norm are derived for semidiscrete semilinear parabolic problems using various assumptions on the forcing term. Standard continuous Galerkin (conforming) finite element method is employed. Our main tools in deriving these error estimates are the elliptic reconstruction technique, with the aid of Grönwall’s lemma and continuation argument.","PeriodicalId":123568,"journal":{"name":"2018 Al-Mansour International Conference on New Trends in Computing, Communication, and Information Technology (NTCCIT)","volume":"61 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Posteriori Error Analysis for Semidiscrete Semilinear Parabolic Problems\",\"authors\":\"Mohammad Sabawi\",\"doi\":\"10.1109/NTCCIT.2018.8681193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal order a posteriori error bounds in $L_{\\\\infty }(L_{2})$ norm are derived for semidiscrete semilinear parabolic problems using various assumptions on the forcing term. Standard continuous Galerkin (conforming) finite element method is employed. Our main tools in deriving these error estimates are the elliptic reconstruction technique, with the aid of Grönwall’s lemma and continuation argument.\",\"PeriodicalId\":123568,\"journal\":{\"name\":\"2018 Al-Mansour International Conference on New Trends in Computing, Communication, and Information Technology (NTCCIT)\",\"volume\":\"61 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Al-Mansour International Conference on New Trends in Computing, Communication, and Information Technology (NTCCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NTCCIT.2018.8681193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Al-Mansour International Conference on New Trends in Computing, Communication, and Information Technology (NTCCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NTCCIT.2018.8681193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Posteriori Error Analysis for Semidiscrete Semilinear Parabolic Problems
Optimal order a posteriori error bounds in $L_{\infty }(L_{2})$ norm are derived for semidiscrete semilinear parabolic problems using various assumptions on the forcing term. Standard continuous Galerkin (conforming) finite element method is employed. Our main tools in deriving these error estimates are the elliptic reconstruction technique, with the aid of Grönwall’s lemma and continuation argument.