基于动态希尔伯特曲线路由的频谱图图像编码

ChingShun Lin, Daren Wang
{"title":"基于动态希尔伯特曲线路由的频谱图图像编码","authors":"ChingShun Lin, Daren Wang","doi":"10.1109/IPTA.2010.5586805","DOIUrl":null,"url":null,"abstract":"In this paper we propose an image-based biological classification system that can identify different creatures via their sounds. The overall system involves the relative spectral transform-perceptual linear prediction for spectrogram image extraction, cosine similarity measure for feature matching, dynamic Hilbert curve for spectrogram routing, and Gaussian mixture model for 1-D spectrogram classification. As an example of our approach, results for honk, dolphin, and whale classification are presented. This method works well on a wide variety of bio-sounds, especially for the highly self-repeated ones. Applications of this approach include biological signal analysis and spectrogram library establishment.","PeriodicalId":236574,"journal":{"name":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spectrogram image encoding based on dynamic Hilbert curve routing\",\"authors\":\"ChingShun Lin, Daren Wang\",\"doi\":\"10.1109/IPTA.2010.5586805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose an image-based biological classification system that can identify different creatures via their sounds. The overall system involves the relative spectral transform-perceptual linear prediction for spectrogram image extraction, cosine similarity measure for feature matching, dynamic Hilbert curve for spectrogram routing, and Gaussian mixture model for 1-D spectrogram classification. As an example of our approach, results for honk, dolphin, and whale classification are presented. This method works well on a wide variety of bio-sounds, especially for the highly self-repeated ones. Applications of this approach include biological signal analysis and spectrogram library establishment.\",\"PeriodicalId\":236574,\"journal\":{\"name\":\"2010 2nd International Conference on Image Processing Theory, Tools and Applications\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Conference on Image Processing Theory, Tools and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2010.5586805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2010.5586805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一个基于图像的生物分类系统,可以通过声音来识别不同的生物。整个系统包括相对光谱变换感知线性预测用于谱图图像提取,余弦相似度度量用于特征匹配,动态希尔伯特曲线用于谱图路由,高斯混合模型用于一维谱图分类。作为我们方法的一个例子,给出了喇叭、海豚和鲸鱼分类的结果。这种方法适用于各种各样的生物声音,尤其是那些高度自我重复的声音。该方法的应用包括生物信号分析和谱图库的建立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectrogram image encoding based on dynamic Hilbert curve routing
In this paper we propose an image-based biological classification system that can identify different creatures via their sounds. The overall system involves the relative spectral transform-perceptual linear prediction for spectrogram image extraction, cosine similarity measure for feature matching, dynamic Hilbert curve for spectrogram routing, and Gaussian mixture model for 1-D spectrogram classification. As an example of our approach, results for honk, dolphin, and whale classification are presented. This method works well on a wide variety of bio-sounds, especially for the highly self-repeated ones. Applications of this approach include biological signal analysis and spectrogram library establishment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信