关于超立方体子集分区变种

H. Sahakyan, L. Aslanyan, V. Ryazanov
{"title":"关于超立方体子集分区变种","authors":"H. Sahakyan, L. Aslanyan, V. Ryazanov","doi":"10.1109/CSITechnol.2019.8895211","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of a quantitative description of partitions (QDP) of arbitrary m-subsets of the n-dimensional unit cube is considered for a given m, 0 ≤ m ≤ 2n. A necessary condition for the existence of a given QDP-subset is achieved in terms of minimal and maximal layers that are known by earlier publications. It is shown that QDP are in a correspondence to the upper homogeneous area elements of the n-cube and to the monotone Boolean functions. The NP-hardness of the QDP problem is proved. QDP singular points on different layers of the cube are described.","PeriodicalId":414834,"journal":{"name":"2019 Computer Science and Information Technologies (CSIT)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Hypercube Subset Partitioning Varieties\",\"authors\":\"H. Sahakyan, L. Aslanyan, V. Ryazanov\",\"doi\":\"10.1109/CSITechnol.2019.8895211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the problem of a quantitative description of partitions (QDP) of arbitrary m-subsets of the n-dimensional unit cube is considered for a given m, 0 ≤ m ≤ 2n. A necessary condition for the existence of a given QDP-subset is achieved in terms of minimal and maximal layers that are known by earlier publications. It is shown that QDP are in a correspondence to the upper homogeneous area elements of the n-cube and to the monotone Boolean functions. The NP-hardness of the QDP problem is proved. QDP singular points on different layers of the cube are described.\",\"PeriodicalId\":414834,\"journal\":{\"name\":\"2019 Computer Science and Information Technologies (CSIT)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Computer Science and Information Technologies (CSIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSITechnol.2019.8895211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computer Science and Information Technologies (CSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSITechnol.2019.8895211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究给定m, 0≤m≤2n的n维单位立方体的任意m个子集的分区定量描述问题。给定qdp子集存在的必要条件是根据先前出版物已知的最小层和最大层来实现的。证明了QDP与n立方的上齐次面积元和单调布尔函数是对应的。证明了QDP问题的np -硬度。描述了立方体不同层上的QDP奇异点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Hypercube Subset Partitioning Varieties
In this paper, the problem of a quantitative description of partitions (QDP) of arbitrary m-subsets of the n-dimensional unit cube is considered for a given m, 0 ≤ m ≤ 2n. A necessary condition for the existence of a given QDP-subset is achieved in terms of minimal and maximal layers that are known by earlier publications. It is shown that QDP are in a correspondence to the upper homogeneous area elements of the n-cube and to the monotone Boolean functions. The NP-hardness of the QDP problem is proved. QDP singular points on different layers of the cube are described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信