{"title":"关于超立方体子集分区变种","authors":"H. Sahakyan, L. Aslanyan, V. Ryazanov","doi":"10.1109/CSITechnol.2019.8895211","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of a quantitative description of partitions (QDP) of arbitrary m-subsets of the n-dimensional unit cube is considered for a given m, 0 ≤ m ≤ 2n. A necessary condition for the existence of a given QDP-subset is achieved in terms of minimal and maximal layers that are known by earlier publications. It is shown that QDP are in a correspondence to the upper homogeneous area elements of the n-cube and to the monotone Boolean functions. The NP-hardness of the QDP problem is proved. QDP singular points on different layers of the cube are described.","PeriodicalId":414834,"journal":{"name":"2019 Computer Science and Information Technologies (CSIT)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Hypercube Subset Partitioning Varieties\",\"authors\":\"H. Sahakyan, L. Aslanyan, V. Ryazanov\",\"doi\":\"10.1109/CSITechnol.2019.8895211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the problem of a quantitative description of partitions (QDP) of arbitrary m-subsets of the n-dimensional unit cube is considered for a given m, 0 ≤ m ≤ 2n. A necessary condition for the existence of a given QDP-subset is achieved in terms of minimal and maximal layers that are known by earlier publications. It is shown that QDP are in a correspondence to the upper homogeneous area elements of the n-cube and to the monotone Boolean functions. The NP-hardness of the QDP problem is proved. QDP singular points on different layers of the cube are described.\",\"PeriodicalId\":414834,\"journal\":{\"name\":\"2019 Computer Science and Information Technologies (CSIT)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Computer Science and Information Technologies (CSIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSITechnol.2019.8895211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computer Science and Information Technologies (CSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSITechnol.2019.8895211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, the problem of a quantitative description of partitions (QDP) of arbitrary m-subsets of the n-dimensional unit cube is considered for a given m, 0 ≤ m ≤ 2n. A necessary condition for the existence of a given QDP-subset is achieved in terms of minimal and maximal layers that are known by earlier publications. It is shown that QDP are in a correspondence to the upper homogeneous area elements of the n-cube and to the monotone Boolean functions. The NP-hardness of the QDP problem is proved. QDP singular points on different layers of the cube are described.