近线性时间最小切量的一种简单算法

Antonio Molina Lovett, Bryce Sandlund
{"title":"近线性时间最小切量的一种简单算法","authors":"Antonio Molina Lovett, Bryce Sandlund","doi":"10.4230/LIPIcs.SWAT.2020.12","DOIUrl":null,"url":null,"abstract":"We consider the minimum cut problem in undirected, weighted graphs. We give a simple algorithm to find a minimum cut that $2$-respects (cuts two edges of) a spanning tree $T$ of a graph $G$. This procedure can be used in place of the complicated subroutine given in Karger's near-linear time minimum cut algorithm (J. ACM, 2000). We give a self-contained version of Karger's algorithm with the new procedure, which is easy to state and relatively simple to implement. It produces a minimum cut on an $m$-edge, $n$-vertex graph in $O(m \\log^3 n)$ time with high probability, matching the complexity of Karger's approach.","PeriodicalId":447445,"journal":{"name":"Scandinavian Workshop on Algorithm Theory","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A Simple Algorithm for Minimum Cuts in Near-Linear Time\",\"authors\":\"Antonio Molina Lovett, Bryce Sandlund\",\"doi\":\"10.4230/LIPIcs.SWAT.2020.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the minimum cut problem in undirected, weighted graphs. We give a simple algorithm to find a minimum cut that $2$-respects (cuts two edges of) a spanning tree $T$ of a graph $G$. This procedure can be used in place of the complicated subroutine given in Karger's near-linear time minimum cut algorithm (J. ACM, 2000). We give a self-contained version of Karger's algorithm with the new procedure, which is easy to state and relatively simple to implement. It produces a minimum cut on an $m$-edge, $n$-vertex graph in $O(m \\\\log^3 n)$ time with high probability, matching the complexity of Karger's approach.\",\"PeriodicalId\":447445,\"journal\":{\"name\":\"Scandinavian Workshop on Algorithm Theory\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Workshop on Algorithm Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.SWAT.2020.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Workshop on Algorithm Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SWAT.2020.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们考虑无向加权图中的最小割问题。我们给出了一个简单的算法来找到一个最小割值,该最小割值为$2$-尊重(切掉图$G$的生成树$T$的两条边)。这个程序可以用来代替在Karger的近线性时间最小切割算法中给出的复杂子程序(J. ACM, 2000)。我们用新的过程给出了一个完备的Karger算法的版本,它易于表述并且相对容易实现。它在$O(m \log^ 3n)$时间内以高概率在$m$边,$n$顶点的图上产生最小切割,与较大方法的复杂性相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Simple Algorithm for Minimum Cuts in Near-Linear Time
We consider the minimum cut problem in undirected, weighted graphs. We give a simple algorithm to find a minimum cut that $2$-respects (cuts two edges of) a spanning tree $T$ of a graph $G$. This procedure can be used in place of the complicated subroutine given in Karger's near-linear time minimum cut algorithm (J. ACM, 2000). We give a self-contained version of Karger's algorithm with the new procedure, which is easy to state and relatively simple to implement. It produces a minimum cut on an $m$-edge, $n$-vertex graph in $O(m \log^3 n)$ time with high probability, matching the complexity of Karger's approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信