高光谱SISR中损失函数的比较研究

N. Aburaed, Mohammed Q. Alkhatib, S. Marshall, J. Zabalza, Hussain Al-Ahmad
{"title":"高光谱SISR中损失函数的比较研究","authors":"N. Aburaed, Mohammed Q. Alkhatib, S. Marshall, J. Zabalza, Hussain Al-Ahmad","doi":"10.23919/eusipco55093.2022.9909827","DOIUrl":null,"url":null,"abstract":"The spatial enhancement of Hyperspectral Imagery (HSI) is a popular research area among the community of image processing in general and remote sensing in particular. HSI contribute to a wide variety of industrial applications, such as Land Cover Land Use. The characterstic that distinguishes HSI from other type of images is the ability to uniquely describe objects with spectral signatures. This can be achieved due to the sensor's ability to capture reflectance in narrowly spaced wavelength bands, which yields an HSI cube with hundreds of bands. However, this ability compromises the spatial resolution of HSI, which must be improved for practicality and usability. There are several studies in the literature related to HSI Super Resolution (HSI-SR), especially using Convolutional Neural Networks (CNNs). Nonetheless, the investigation of the most suitable loss functions to train these networks is necessary and remains as an area to investigate. This paper conducts a comparative study of the most widely used loss functions and their effect on one of the state-of-the-art HSI-SR CNNs, mainly 3D-SRCNN. The paper also proposes a hybrid loss function based on the comparative results, and proves its superiority against other loss functions in terms of Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measurement (SSIM), and Spectral Angle Mapper (SAM).","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Comparative Study of Loss Functions for Hyperspectral SISR\",\"authors\":\"N. Aburaed, Mohammed Q. Alkhatib, S. Marshall, J. Zabalza, Hussain Al-Ahmad\",\"doi\":\"10.23919/eusipco55093.2022.9909827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spatial enhancement of Hyperspectral Imagery (HSI) is a popular research area among the community of image processing in general and remote sensing in particular. HSI contribute to a wide variety of industrial applications, such as Land Cover Land Use. The characterstic that distinguishes HSI from other type of images is the ability to uniquely describe objects with spectral signatures. This can be achieved due to the sensor's ability to capture reflectance in narrowly spaced wavelength bands, which yields an HSI cube with hundreds of bands. However, this ability compromises the spatial resolution of HSI, which must be improved for practicality and usability. There are several studies in the literature related to HSI Super Resolution (HSI-SR), especially using Convolutional Neural Networks (CNNs). Nonetheless, the investigation of the most suitable loss functions to train these networks is necessary and remains as an area to investigate. This paper conducts a comparative study of the most widely used loss functions and their effect on one of the state-of-the-art HSI-SR CNNs, mainly 3D-SRCNN. The paper also proposes a hybrid loss function based on the comparative results, and proves its superiority against other loss functions in terms of Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measurement (SSIM), and Spectral Angle Mapper (SAM).\",\"PeriodicalId\":231263,\"journal\":{\"name\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eusipco55093.2022.9909827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

高光谱图像的空间增强是图像处理领域尤其是遥感领域的一个热门研究领域。恒生指数有助于各种各样的工业应用,如土地覆盖和土地利用。将HSI与其他类型的图像区分开来的特征是能够独特地描述具有光谱特征的物体。这可以实现,因为传感器能够在狭窄的波长范围内捕获反射率,从而产生具有数百个波段的HSI立方体。然而,这种能力损害了HSI的空间分辨率,必须提高实用性和可用性。文献中有一些关于HSI超分辨率(HSI- sr)的研究,特别是使用卷积神经网络(cnn)。尽管如此,研究最合适的损失函数来训练这些网络是必要的,并且仍然是一个有待研究的领域。本文对最常用的损失函数及其对最先进的HSI-SR cnn(主要是3D-SRCNN)的影响进行了比较研究。在对比结果的基础上提出了一种混合损失函数,并在峰值信噪比(PSNR)、结构相似指数测量(SSIM)和谱角映射器(SAM)等方面证明了其优于其他损失函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparative Study of Loss Functions for Hyperspectral SISR
The spatial enhancement of Hyperspectral Imagery (HSI) is a popular research area among the community of image processing in general and remote sensing in particular. HSI contribute to a wide variety of industrial applications, such as Land Cover Land Use. The characterstic that distinguishes HSI from other type of images is the ability to uniquely describe objects with spectral signatures. This can be achieved due to the sensor's ability to capture reflectance in narrowly spaced wavelength bands, which yields an HSI cube with hundreds of bands. However, this ability compromises the spatial resolution of HSI, which must be improved for practicality and usability. There are several studies in the literature related to HSI Super Resolution (HSI-SR), especially using Convolutional Neural Networks (CNNs). Nonetheless, the investigation of the most suitable loss functions to train these networks is necessary and remains as an area to investigate. This paper conducts a comparative study of the most widely used loss functions and their effect on one of the state-of-the-art HSI-SR CNNs, mainly 3D-SRCNN. The paper also proposes a hybrid loss function based on the comparative results, and proves its superiority against other loss functions in terms of Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measurement (SSIM), and Spectral Angle Mapper (SAM).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信