T. Koike-Akino, Ye Wang, K. Kojima, K. Parsons, Tsuyoshi Yoshida
{"title":"基于概率幅度整形的光纤QAM系统零乘法器稀疏DNN均衡","authors":"T. Koike-Akino, Ye Wang, K. Kojima, K. Parsons, Tsuyoshi Yoshida","doi":"10.1109/ecoc52684.2021.9605870","DOIUrl":null,"url":null,"abstract":"We propose a multiplier-less deep neural network (DNN) to mitigate fiber-nonlinear distortion of shaped constellations. Our DNN achieves an excellent performance-complexity trade-off with progressive lottery ticket hypothesis (LHT) weight pruning and additive powers-of-two (APoT) quantization.","PeriodicalId":117375,"journal":{"name":"2021 European Conference on Optical Communication (ECOC)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Zero-Multiplier Sparse DNN Equalization for Fiber-Optic QAM Systems with Probabilistic Amplitude Shaping\",\"authors\":\"T. Koike-Akino, Ye Wang, K. Kojima, K. Parsons, Tsuyoshi Yoshida\",\"doi\":\"10.1109/ecoc52684.2021.9605870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a multiplier-less deep neural network (DNN) to mitigate fiber-nonlinear distortion of shaped constellations. Our DNN achieves an excellent performance-complexity trade-off with progressive lottery ticket hypothesis (LHT) weight pruning and additive powers-of-two (APoT) quantization.\",\"PeriodicalId\":117375,\"journal\":{\"name\":\"2021 European Conference on Optical Communication (ECOC)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 European Conference on Optical Communication (ECOC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ecoc52684.2021.9605870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 European Conference on Optical Communication (ECOC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ecoc52684.2021.9605870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Zero-Multiplier Sparse DNN Equalization for Fiber-Optic QAM Systems with Probabilistic Amplitude Shaping
We propose a multiplier-less deep neural network (DNN) to mitigate fiber-nonlinear distortion of shaped constellations. Our DNN achieves an excellent performance-complexity trade-off with progressive lottery ticket hypothesis (LHT) weight pruning and additive powers-of-two (APoT) quantization.