短模拟喷泉码的性能分析

R. Abbas, M. Shirvanimoghaddam, Tao Huang, Yonghui Li, B. Vucetic
{"title":"短模拟喷泉码的性能分析","authors":"R. Abbas, M. Shirvanimoghaddam, Tao Huang, Yonghui Li, B. Vucetic","doi":"10.1109/GCWkshps45667.2019.9024699","DOIUrl":null,"url":null,"abstract":"Analog fountain codes are a class of rateless codes that have been demonstrated to achieve near-capacity performance for asymptotically long blocks, without any channel state information at the transmitter side. Recently, a new design for these codes has been proposed aimed at improving its performance in the finite block length regime, dubbed short analog fountain codes (S-AFC). S-AFC was shown to score error rates orders of magnitude smaller than AFC for blocks of a few hundred bits long. S-AFC was also shown to achieve average block lengths close to the Polyanskiy-Poor and Verdu bound for high SNR and exhibits no error floors down to 10^-7. In this paper, we derive lower and upper bounds on the block error rate (BLER) of S-AFC. We verify these bounds through Monte Carlo simulations and provide all the proofs in the appendix.","PeriodicalId":210825,"journal":{"name":"2019 IEEE Globecom Workshops (GC Wkshps)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Performance Analysis of Short Analog Fountain Codes\",\"authors\":\"R. Abbas, M. Shirvanimoghaddam, Tao Huang, Yonghui Li, B. Vucetic\",\"doi\":\"10.1109/GCWkshps45667.2019.9024699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analog fountain codes are a class of rateless codes that have been demonstrated to achieve near-capacity performance for asymptotically long blocks, without any channel state information at the transmitter side. Recently, a new design for these codes has been proposed aimed at improving its performance in the finite block length regime, dubbed short analog fountain codes (S-AFC). S-AFC was shown to score error rates orders of magnitude smaller than AFC for blocks of a few hundred bits long. S-AFC was also shown to achieve average block lengths close to the Polyanskiy-Poor and Verdu bound for high SNR and exhibits no error floors down to 10^-7. In this paper, we derive lower and upper bounds on the block error rate (BLER) of S-AFC. We verify these bounds through Monte Carlo simulations and provide all the proofs in the appendix.\",\"PeriodicalId\":210825,\"journal\":{\"name\":\"2019 IEEE Globecom Workshops (GC Wkshps)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Globecom Workshops (GC Wkshps)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCWkshps45667.2019.9024699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCWkshps45667.2019.9024699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

模拟喷泉码是一类无速率码,已被证明可以实现近容量性能的渐近长块,在发送端没有任何信道状态信息。最近,提出了一种新的设计,旨在提高其在有限块长度范围内的性能,称为短模拟喷泉码(S-AFC)。对于几百比特长的块,S-AFC的错误率比AFC小几个数量级。S-AFC还被证明在高信噪比下实现接近polyansky - poor和Verdu界的平均块长度,并且没有低至10^-7的误差层。本文给出了S-AFC的块错误率(BLER)的下界和上界。我们通过蒙特卡罗模拟验证了这些边界,并在附录中提供了所有的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of Short Analog Fountain Codes
Analog fountain codes are a class of rateless codes that have been demonstrated to achieve near-capacity performance for asymptotically long blocks, without any channel state information at the transmitter side. Recently, a new design for these codes has been proposed aimed at improving its performance in the finite block length regime, dubbed short analog fountain codes (S-AFC). S-AFC was shown to score error rates orders of magnitude smaller than AFC for blocks of a few hundred bits long. S-AFC was also shown to achieve average block lengths close to the Polyanskiy-Poor and Verdu bound for high SNR and exhibits no error floors down to 10^-7. In this paper, we derive lower and upper bounds on the block error rate (BLER) of S-AFC. We verify these bounds through Monte Carlo simulations and provide all the proofs in the appendix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信