学习坚持:探索模型优化和经验一致性之间的权衡

Dmitri Goldenberg, Guy Tsype, Igor Spivak, Javier Albert, Amir Tzur
{"title":"学习坚持:探索模型优化和经验一致性之间的权衡","authors":"Dmitri Goldenberg, Guy Tsype, Igor Spivak, Javier Albert, Amir Tzur","doi":"10.1145/3442442.3452051","DOIUrl":null,"url":null,"abstract":"Machine learning models and recommender systems play a crucial role in web applications, providing personalized experiences to each customer. Recurring visits of the same customer raise a nontrivial question about the persistence of the experience. Given a changing user context, alongside online algorithms that update over time, the optimal treatment might differ from past model decisions. However, changing customer experience may create inconsistency and harm customer satisfaction and business process completion. This paper discusses the tradeoff between providing the user with a consistent experience and suggesting an up-to-date optimal treatment. We offer preliminary approaches to tackle the persistence problem and explore the tradeoffs in a simulated study.","PeriodicalId":129420,"journal":{"name":"Companion Proceedings of the Web Conference 2021","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Learning to Persist: Exploring the Tradeoff Between Model Optimization and Experience Consistency\",\"authors\":\"Dmitri Goldenberg, Guy Tsype, Igor Spivak, Javier Albert, Amir Tzur\",\"doi\":\"10.1145/3442442.3452051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning models and recommender systems play a crucial role in web applications, providing personalized experiences to each customer. Recurring visits of the same customer raise a nontrivial question about the persistence of the experience. Given a changing user context, alongside online algorithms that update over time, the optimal treatment might differ from past model decisions. However, changing customer experience may create inconsistency and harm customer satisfaction and business process completion. This paper discusses the tradeoff between providing the user with a consistent experience and suggesting an up-to-date optimal treatment. We offer preliminary approaches to tackle the persistence problem and explore the tradeoffs in a simulated study.\",\"PeriodicalId\":129420,\"journal\":{\"name\":\"Companion Proceedings of the Web Conference 2021\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Proceedings of the Web Conference 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3442442.3452051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442442.3452051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

机器学习模型和推荐系统在web应用程序中发挥着至关重要的作用,为每个客户提供个性化的体验。同一客户的反复访问提出了一个重要的问题,即这种体验的持久性。考虑到不断变化的用户环境,以及随时间更新的在线算法,最佳处理可能与过去的模型决策不同。然而,不断变化的客户体验可能会造成不一致,并损害客户满意度和业务流程的完成。本文讨论了为用户提供一致的体验和建议最新的最佳治疗之间的权衡。我们提供了解决持久性问题的初步方法,并在模拟研究中探讨了权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning to Persist: Exploring the Tradeoff Between Model Optimization and Experience Consistency
Machine learning models and recommender systems play a crucial role in web applications, providing personalized experiences to each customer. Recurring visits of the same customer raise a nontrivial question about the persistence of the experience. Given a changing user context, alongside online algorithms that update over time, the optimal treatment might differ from past model decisions. However, changing customer experience may create inconsistency and harm customer satisfaction and business process completion. This paper discusses the tradeoff between providing the user with a consistent experience and suggesting an up-to-date optimal treatment. We offer preliminary approaches to tackle the persistence problem and explore the tradeoffs in a simulated study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信