{"title":"在生物工程文本语料库中验证机器学习应用的IDE支持","authors":"Piyush Basia, Tae-Hyuk Ahn, Myoungkyu Song","doi":"10.1109/BIBM55620.2022.9995298","DOIUrl":null,"url":null,"abstract":"Modeling in machine learning (ML) is critical for software systems in practice. ML applications are required to validate their models and implementations but quality validation is a challenging and time-consuming process for developers. To address this limitation, we present a novel validation technique for ML applications to help developers or researchers (e.g., bioengineering domain) inspect (1) software code (ML API usages) and (2) ML model (extracted features).","PeriodicalId":210337,"journal":{"name":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An IDE Support for Validating Machine Learning Applications in Bioengineering Text Corpora\",\"authors\":\"Piyush Basia, Tae-Hyuk Ahn, Myoungkyu Song\",\"doi\":\"10.1109/BIBM55620.2022.9995298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling in machine learning (ML) is critical for software systems in practice. ML applications are required to validate their models and implementations but quality validation is a challenging and time-consuming process for developers. To address this limitation, we present a novel validation technique for ML applications to help developers or researchers (e.g., bioengineering domain) inspect (1) software code (ML API usages) and (2) ML model (extracted features).\",\"PeriodicalId\":210337,\"journal\":{\"name\":\"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM55620.2022.9995298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM55620.2022.9995298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An IDE Support for Validating Machine Learning Applications in Bioengineering Text Corpora
Modeling in machine learning (ML) is critical for software systems in practice. ML applications are required to validate their models and implementations but quality validation is a challenging and time-consuming process for developers. To address this limitation, we present a novel validation technique for ML applications to help developers or researchers (e.g., bioengineering domain) inspect (1) software code (ML API usages) and (2) ML model (extracted features).