E. Guzman Ramirez, S. Alvarado, M. A. Ramírez, Luis Rosario
{"title":"一种用于模式识别的高效形态联想记忆硬件实现","authors":"E. Guzman Ramirez, S. Alvarado, M. A. Ramírez, Luis Rosario","doi":"10.1109/CERMA.2010.58","DOIUrl":null,"url":null,"abstract":"This work describes a hardware architecture implementation of the morphological associative memories (MAM) using reconfigurable hardware devices such as FPGA (Field Programmable Gates Arrays) and its applications in pattern recognition systems. Both learning and recognition processes of the MAM are implemented by means of a parallel architecture using VHSIC Hardware Description Language, obtaining high speed of processing. The performance of the modeled architecture was evaluated when Morphological Hetero associative Memories (MHM) in both max and min types are used. Our proposal was tested to signal recognitions, for this purpose, it was necessary to implement an acquisition and memory systems.","PeriodicalId":119218,"journal":{"name":"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Morphological Associative Memories Hardware Implementation for Pattern Recognition Applications\",\"authors\":\"E. Guzman Ramirez, S. Alvarado, M. A. Ramírez, Luis Rosario\",\"doi\":\"10.1109/CERMA.2010.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work describes a hardware architecture implementation of the morphological associative memories (MAM) using reconfigurable hardware devices such as FPGA (Field Programmable Gates Arrays) and its applications in pattern recognition systems. Both learning and recognition processes of the MAM are implemented by means of a parallel architecture using VHSIC Hardware Description Language, obtaining high speed of processing. The performance of the modeled architecture was evaluated when Morphological Hetero associative Memories (MHM) in both max and min types are used. Our proposal was tested to signal recognitions, for this purpose, it was necessary to implement an acquisition and memory systems.\",\"PeriodicalId\":119218,\"journal\":{\"name\":\"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CERMA.2010.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CERMA.2010.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Efficient Morphological Associative Memories Hardware Implementation for Pattern Recognition Applications
This work describes a hardware architecture implementation of the morphological associative memories (MAM) using reconfigurable hardware devices such as FPGA (Field Programmable Gates Arrays) and its applications in pattern recognition systems. Both learning and recognition processes of the MAM are implemented by means of a parallel architecture using VHSIC Hardware Description Language, obtaining high speed of processing. The performance of the modeled architecture was evaluated when Morphological Hetero associative Memories (MHM) in both max and min types are used. Our proposal was tested to signal recognitions, for this purpose, it was necessary to implement an acquisition and memory systems.