G. Awad, Duy-Dinh Le, C. Ngo, Vinh-Tiep Nguyen, G. Quénot, Cees G. M. Snoek, S. Satoh
{"title":"视频索引,搜索,检测和描述与重点在TRECVID","authors":"G. Awad, Duy-Dinh Le, C. Ngo, Vinh-Tiep Nguyen, G. Quénot, Cees G. M. Snoek, S. Satoh","doi":"10.1145/3078971.3079044","DOIUrl":null,"url":null,"abstract":"There has been a tremendous growth in video data the last decade. People are using mobile phones and tablets to take, share or watch videos more than ever before. Video cameras are around us almost everywhere in the public domain (e.g. stores, streets, public facilities, ...etc). Efficient and effective retrieval methods are critically needed in different applications. The goal of TRECVID is to encourage research in content-based video retrieval by providing large test collections, uniform scoring procedures, and a forum for organizations interested in comparing their results. In this tutorial, we present and discuss some of the most important and fundamental content-based video retrieval problems such as recognizing predefined visual concepts, searching in videos for complex ad-hoc user queries, searching by image/video examples in a video dataset to retrieve specific objects, persons, or locations, detecting events, and finally bridging the gap between vision and language by looking into how can systems automatically describe videos in a natural language. A review of the state of the art, current challenges, and future directions along with pointers to useful resources will be presented by different regular TRECVID participating teams. Each team will present one of the following tasks: Semantic INdexing (SIN) Zero-example (0Ex) Video Search (AVS) Instance Search (INS) Multimedia Event Detection (MED) Video to Text (VTT)","PeriodicalId":403556,"journal":{"name":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","volume":"93-94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Video Indexing, Search, Detection, and Description with Focus on TRECVID\",\"authors\":\"G. Awad, Duy-Dinh Le, C. Ngo, Vinh-Tiep Nguyen, G. Quénot, Cees G. M. Snoek, S. Satoh\",\"doi\":\"10.1145/3078971.3079044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been a tremendous growth in video data the last decade. People are using mobile phones and tablets to take, share or watch videos more than ever before. Video cameras are around us almost everywhere in the public domain (e.g. stores, streets, public facilities, ...etc). Efficient and effective retrieval methods are critically needed in different applications. The goal of TRECVID is to encourage research in content-based video retrieval by providing large test collections, uniform scoring procedures, and a forum for organizations interested in comparing their results. In this tutorial, we present and discuss some of the most important and fundamental content-based video retrieval problems such as recognizing predefined visual concepts, searching in videos for complex ad-hoc user queries, searching by image/video examples in a video dataset to retrieve specific objects, persons, or locations, detecting events, and finally bridging the gap between vision and language by looking into how can systems automatically describe videos in a natural language. A review of the state of the art, current challenges, and future directions along with pointers to useful resources will be presented by different regular TRECVID participating teams. Each team will present one of the following tasks: Semantic INdexing (SIN) Zero-example (0Ex) Video Search (AVS) Instance Search (INS) Multimedia Event Detection (MED) Video to Text (VTT)\",\"PeriodicalId\":403556,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval\",\"volume\":\"93-94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3078971.3079044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078971.3079044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Video Indexing, Search, Detection, and Description with Focus on TRECVID
There has been a tremendous growth in video data the last decade. People are using mobile phones and tablets to take, share or watch videos more than ever before. Video cameras are around us almost everywhere in the public domain (e.g. stores, streets, public facilities, ...etc). Efficient and effective retrieval methods are critically needed in different applications. The goal of TRECVID is to encourage research in content-based video retrieval by providing large test collections, uniform scoring procedures, and a forum for organizations interested in comparing their results. In this tutorial, we present and discuss some of the most important and fundamental content-based video retrieval problems such as recognizing predefined visual concepts, searching in videos for complex ad-hoc user queries, searching by image/video examples in a video dataset to retrieve specific objects, persons, or locations, detecting events, and finally bridging the gap between vision and language by looking into how can systems automatically describe videos in a natural language. A review of the state of the art, current challenges, and future directions along with pointers to useful resources will be presented by different regular TRECVID participating teams. Each team will present one of the following tasks: Semantic INdexing (SIN) Zero-example (0Ex) Video Search (AVS) Instance Search (INS) Multimedia Event Detection (MED) Video to Text (VTT)